Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hello sun
Xem chi tiết
Ngô Bá Hùng
6 tháng 3 2022 lúc 22:19

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

Nguyễn Ngọc Mai Anh
Xem chi tiết
Mất nick đau lòng con qu...
22 tháng 11 2018 lúc 10:25

\(x+xy+y=9\)\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=10\)

\(\Rightarrow\)\(x+1;y+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Dễ r tự làm 

van nguyen
Xem chi tiết
Hoàng Phúc
31 tháng 1 2017 lúc 21:23

a,xy-4x=35-5y<=>xy-4x+5y=35<=>xy-4x+5y-20=35-20<=>x(y-4)+5(y-4)=15<=>(x+5)(y-4)=15=1.15=15.1=......

b,x2+x+6=y2<=>4(x2+x+6)=4y2<=>4x2+4x+1+5=4y2<=>(2x+1)2+5=(2y)2<=>(2y)2-(2x+1)2=5<=>(2y-2x-1)(2y+2x+1)=5=1.5=....

ngonhuminh
2 tháng 2 2017 lúc 17:28

Lớp 8 không làm kiểu vậy

a) \(x\left(y-4\right)=35-5y\)  với y= 4 không phải nghiệm

\(x=\frac{35-5y}{y-4}=\frac{15-5\left(y-4\right)}{y-4}=\frac{15}{y-4}-5\)

y-4=U(15)={-15,-5,-3,-1,1,3,5,15}

=> y={-11,-1,1,3,5,7,9,19}

=> x={-6,-8,-10,-20,10,0,-2,-4}

b)

\(\left(2x+1\right)^2=4y^2-24+1=4y^2-23\)

Hiệu 2 số chính phương =23 chỉ có thể là 11 và 12

\(\hept{\begin{cases}\left(2y\right)^2=12^2\Rightarrow y=+-6\\\left(2x+1\right)^2=11^2\Rightarrow x=5hoac-6\end{cases}}\)

Khương Vũ Phương Anh
Xem chi tiết
Đinh Đức Hùng
25 tháng 2 2018 lúc 12:51

\(PT\Leftrightarrow x^4+y^3-xy^3-1=0\)

\(\Leftrightarrow\left(x^4-1\right)+\left(y^3-xy^3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1\right)-y^3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x+1=y^3\end{cases}}\)

TH1 : \(x=1\Rightarrow y\in Z\)

TH2 : \(x^3+x^2+x+1=y^3\)

Ta có : \(x^3< x^3+x^2+x+1< x^3+3x^2+3x+1\)

\(\Leftrightarrow x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\notin Z\) hay \(y\notin Z\) (loại)

Vậy \(x=1\) và \(y\in Z\)

vu anh duc
Xem chi tiết
Nguyễn Linh Chi
11 tháng 9 2020 lúc 23:43

a.  \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)

<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)

<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)

Đặt: x + y = u; xy = v => u; v là số nguyên

Ta có: uv - \(u^2+2v=1\)

<=> \(u^2-uv-2v+1=0\) 

<=> \(u^2+1=v\left(2+u\right)\)

=> \(u^2+1⋮2+u\)

=> \(u^2-4+5⋮2+u\)

=> \(5⋮2-u\)

=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1 

Mỗi trường hợp sẽ tìm đc v 

=> x; y 

Khách vãng lai đã xóa
nguyễn như quỳnh
Xem chi tiết
Phạm Hồng Hạnh
24 tháng 10 2015 lúc 20:01

Phương trình đã cho tương đương với: 2x+ 2y2 - 2xy-2x-2y=0 (=) (x-y)2+(x-1)2+(y-1)2=2 (1)

Không mất tính tổng quát giả sử x>= y. Do x;y nguyên nên x-y=0 hoặc x-y=1

*) Xét x-y=0 =) (1) (=) 2(x-1)2=2 (=) x=y=2 (t/m)

*) Xét x-y=1 (=) x-1=y =) (1) (=) 1+y2+(y2-2y+1)=2 (=) 2y2-2y=0 (=) y=0;x=1 hoặc y=1;x=2

Vậy các cặp nghiệm (x;y) của phương trình là (2;2);(0;1);(1;0);(1;2);(2;1)

phan thị minh anh
Xem chi tiết
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 12 2021 lúc 20:30

\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)

Gọi a là nghiệm chung của 2 pt

\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)

\(\Rightarrow3a+3m=0\Rightarrow a=-m\)

Thay vào 2 pt ban đầu:

\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

Hoàng Phúc
Xem chi tiết
Hà Minh Hiếu
9 tháng 11 2016 lúc 16:25

A = x mũ 3 - y mũ 2 = xy

   =  x mũ 2 . ( x - 1 ) + x mũ 2 - y mũ 2 = xy

  =  ( x mũ 2 . ( x -1) + xy )  +  ( x mũ 2 + y mũ 2 - 2xy )  - 2y mũ 2  = 0

  =  ( x mũ 2 . ( x -1) + xy ) + ( x - y ) mũ 2 - 2y mũ 2 = 0

Sau đó tự phân tích và tìm nghiệm

Nguyễn Tấn Mạnh att
9 tháng 11 2016 lúc 19:55

Tớ nghĩ ra rồi :không biết đó có phải là số 0?

xa nguyen nhat minh
10 tháng 11 2016 lúc 20:01

89898