So sánh 4 và căn (5)+1 7 và căn(5+căn7)
So sánh :
1. 1- căn3 và căn2 - căn 6
2. căn của (4 + căn7 ) - căn của ( 4- căn7 ) - căn2 và 0
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
2:
Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)
=0
căn(căn 7 +5+4căn (căn7 +1))- căn(căn7 +2- 2căn(căn 7 +1))
khôg dùng mt so sanh hai số căn(4+căn7) và căn((7+căn13)/2)
\(\sqrt{4+\sqrt{7}}=\sqrt{\frac{2\left(4+\sqrt{7}\right)}{2}}=\sqrt{\frac{8+\sqrt{28}}{2}}\)
do \(\sqrt{\frac{8+\sqrt{28}}{2}}>\sqrt{\frac{7+\sqrt{13}}{2}}\)=>\(\sqrt{4+\sqrt{7}}>\sqrt{\frac{7+\sqrt{13}}{2}}\)
bài 1 : tính , rút gọn
a, 4 căn 3a -3 căn 12a +6 căn a phần 3 - 2 căn 20a
b, 1+ căn 17 1 - căn 7
--------------------------- + ----------------------------
căn 2 +căn 4 + căn7 căn 2 - căn 4-căn7
a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)
\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)
B1:thực hiện phép tính:
a.( 2 căn6 - 4 căn3 + 5 căn 2 - 1/4 căn8) x 3 căn6
b.( căn1/7 - căn16/7 + căn7) : căn7
c. ( căn(3-căn5) + căn(3+ căn5) )^2
so sánh 3 căn 7 và 4 căn 5
Lời giải:
$3\sqrt{7}=\sqrt{3^2.7}=\sqrt{63}$
$4\sqrt{5}=\sqrt{4^2.5}=\sqrt{80}$
Mà $63<80$ nên $3\sqrt{7}< 4\sqrt{5}$
So sánh căn 4 cộng căn 5 và 7
\(\sqrt{4}=2\)
7=2+5
5=\(\sqrt{25}\)
\(\sqrt{25}>\sqrt{5}\)
=>\(\sqrt{4}+\sqrt{5}>7\)
\(7=2+5=\sqrt{4}+\sqrt{25}.\)
Ta có : \(25>5\Rightarrow\sqrt{25}>\sqrt{5}\Rightarrow\sqrt{4}+\sqrt{25}>\sqrt{4}+\sqrt{5}\)
Vậy : \(\sqrt{4}+\sqrt{5}< 7\)
căn 5 + căn 7 và căn 12 hãy so sánh
\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}>12=\left(\sqrt{12}\right)^2\\ \Rightarrow\sqrt{5}+\sqrt{7}>\sqrt{12}\)
\(\sqrt{5}+\sqrt{7}\) và \(\sqrt{12}\)
Giả sử: \(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
=> \(\left(\sqrt{5}+\sqrt{7}\right)^2>\left(\sqrt{12}\right)^2\)
<=> \(5+2\sqrt{35}+7>12\)
<=> \(12+2\sqrt{35}>12\) (thỏa mãn giả sử)
Vậy \(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
So sánh
1. căn 11 + căn 5 và 4
2. 3 căn 3 và căn 19 - căn 2
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2