Giải phương trình:
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Giải phương trịnh, hệ phương trình sau:
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2-x=y^2-y\end{matrix}\right.\)
b) \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
a, Ta có : \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2-y^2-x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=1\\\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=1\\\left(x-y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
TH1 : \(x-y=0\Rightarrow x=y\)
- Thay vào PT ( I ) ta được : \(x^2+x^2=2x^2=1\)
\(\Rightarrow x=y=\dfrac{\sqrt{2}}{2}\)
TH2 : \(x+y-1=0\)
- Kết hợp PT ( I ) ta được hệ : \(\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)^2-2xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\-2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm là \(S=\left\{\left(\dfrac{\sqrt{2}}{2};\dfrac{\sqrt{2}}{2}\right);\left(1;0\right);\left(0;1\right)\right\}\)
b.
Đặt \(\sqrt{x^2+7}=t>0\)
\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)
\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+4+x-4}{2}=x\\t=\dfrac{x+4-x+4}{2}=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vô-nghiệm\right)\\x^2+7=16\end{matrix}\right.\)
\(\Rightarrow x=\pm3\)
Giải phương trình sau:
1, \(\sqrt{5x+3}\) = \(\sqrt{3-\sqrt{2}}\)
2, \(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}\) = 2
3,\(\sqrt{-4x^2+25}=x\)
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
Giải phương trình: \(4\sqrt{x+3}+2\sqrt{2x+7}=\left(x+1\right)\left(x^2+4x+2\right)\)
Giải phương trình: \(4\sqrt{x+3}+2\sqrt{2x+7}=\left(x+1\right)\left(x^2+4x+2\right)\)
giải phương trình:
a, \(x+4\sqrt{7-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}+1\)
b, \(x^2+2x+4=3\sqrt{x^2+4x}\)
a,\(x+4\sqrt{7-x}\) \(-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}-1=0\) (dk \(1\le x\le7\) )
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2+4\sqrt{7-x}-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-1}-4\right)+\left(\sqrt{7-x}\right)\left(4-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-4\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=4\\\sqrt{x-1}=\sqrt{7-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\left(l\right)\\x=4\left(tm\right)\end{cases}}}\)
bạn ơi mình sai đề câu b
b, \(x^2+2x+4=3\sqrt{x^3+4x}\)
giải phương trình :
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Đặt \(\sqrt{x^2+7}=a\left(a>0\right)\)
Khi đó phương trình trở thành :
\(a^2+4x=\left(x+4\right)a\Leftrightarrow a^2-ax+4x-4a=0\)
\(\Leftrightarrow\left(a^2-ax\right)+\left(4x-4a\right)=0\Leftrightarrow a\left(a-x\right)+4\left(x-a\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\Leftrightarrow\orbr{\begin{cases}a-x=0\\a-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=x\\a=4\end{cases}}}\)
+) \(a=x\Rightarrow\sqrt{x^2+7}=x\)( điều kiện bổ sung \(x\ge0\))
\(\Leftrightarrow x^2+7=x^2\Leftrightarrow7=0\)( vô lý ) => loại
+) \(a=4\)( thỏa mãn điều kiện a > 0 ) \(\Rightarrow\sqrt{x^2+7}=4\Leftrightarrow x^2+7=16\)
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 3 ; -3 }
Tích cho mk nhoa !!!! ~~
P/S: Không cần đặt ẩn phụ cho phí t/g!
\(ĐK:x\inℝ\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow x\sqrt{x^2+7}+4\sqrt{x^2+7}=x^2+4x+7\)
\(\Leftrightarrow\left(x^2+7-x\sqrt{x^2+7}\right)-\left(4\sqrt{x^2+7}-4x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+7}-x\right)\left(\sqrt{x^2+7}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+7}=x\left(1\right)\\\sqrt{x^2+7}=4\left(2\right)\end{cases}}\)
Giải (1) ta thấy vô nghiệm
\(\left(2\right)\Leftrightarrow x^2+7=16\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Vậy phương trình có tập nghiệm S = {3;-3}
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
ĐKXĐ: ...
Từ pt dưới:
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)
\(\Leftrightarrow y=x-2\)
Thế vào pt trên:
\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)
\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)
\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)
\(\Leftrightarrow x^2-5x+2=0\)
Giải phương trình
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Đặt : P=\(\sqrt{x^2+7}\Rightarrow x^2+7=P^2\)
Pt trở thành :
P2 + 4x =(x+4)P
\(\Leftrightarrow\) P2 +4x - Px - 4P =0
\(\Leftrightarrow\) P(P-x) -4(P-x) =0
\(\Leftrightarrow\) (P-x)(P-4)=0
Sau đó cho từng cái bằng 0 rồi thế P vào để tìm x
S= { -3; 3 }
Đặt \(x^2+7=a\left(a>0\right),x+4=b\)
Pt đã cho tđ \(a^2+4b-16=ab\)
Giải các phương trình sau: (hệ phương trình)
1.\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
2.\(\sqrt{3-4x}+\sqrt{4x+1}=-16x^2-8x+1\)
3. \(\sqrt{x^2-2x+5}+\sqrt{x+1}=2\)
4. \(\left(-4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
5. \(\sqrt{-4x-1}+\sqrt{4x^2+8x+3}=-4x^2-4x\)
6. \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
7. \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2\sqrt{x^2}\)
Ai làm được 4 bài hoặc nhiều hơn mik sẽ tick nha :)