Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Hồ Thị Hà Giang
24 tháng 2 2017 lúc 21:55

\(\frac{x^2+y^2}{x^2-y^2}\)

Đinh Thị Thùy Trang
Xem chi tiết
Nguyễn Linh Chi
28 tháng 2 2020 lúc 13:46

Với đk trên ta có:

P = \(\frac{2}{x}-\left(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{y}{x+y}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\left(\frac{x-y}{x+y}-\frac{\left(x-y\right)\left(x+y\right)}{xy}\right).\frac{x+y}{x^2+xy+y^2}\)

\(=\frac{2}{x}-\frac{x-y}{xy}.\left(xy-\left(x+y\right)^2\right).\frac{1}{x^2+xy+y^2}\)

\(=\frac{2}{x}+\frac{x-y}{xy}\)

\(=\frac{x+y}{xy}\)

Khách vãng lai đã xóa
chuyên toán thcs ( Cool...
Xem chi tiết
Tran Le Khanh Linh
23 tháng 2 2020 lúc 17:57

\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)

\(\Leftrightarrow A=\frac{4xy}{\left(y^2-x^2\right)\left(y^2+x^2\right)}:\left(\frac{1}{\left(y+x\right)^2}-\frac{x^3+y^3}{\left(x^2-y^2\right)\left(x^2+y^2\right)}\right)\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 22:23

a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)

b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)

 

Mai Trung Hải Phong
23 tháng 8 2023 lúc 15:04

a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).

b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)

Nguyễn Ngọc Mai Anh
Xem chi tiết
Phạm Việt Anh
26 tháng 5 2018 lúc 7:33

Khó thế ai biết

Huy Hoang
28 tháng 9 2020 lúc 22:07

\(\frac{2}{x^2y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\left(x\ge0;y\ge0;x\ne y\right)\)

\(=\frac{\left|x+y\right|}{x^2-y^2}\sqrt{\frac{3.2^2}{2}}\)

\(=\frac{\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\sqrt{6}\)

\(=\frac{1}{x-y}\sqrt{6}\)

Khách vãng lai đã xóa
Duong Thuc Hien
Xem chi tiết
Phụng Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 7 2016 lúc 19:59

Ta có : \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2\sqrt{3}.\left|x+y\right|}{\sqrt{2}.\left(x-y\right)\left(x+y\right)}\)

Vì \(x\ge y\ge0\) nên ta có : \(\left|x+y\right|=x+y\)

\(\Rightarrow\frac{2\sqrt{3}\left|x+y\right|}{\sqrt{2}\left(x-y\right)\left(x+y\right)}=\frac{\sqrt{2}.\sqrt{6}\left(x+y\right)}{\sqrt{2}\left(x-y\right)\left(x+y\right)}=\frac{\sqrt{6}}{x-y}\)

hoang kim le
Xem chi tiết
Hồ Minh Phi
Xem chi tiết