Tính A= -a+b-1 biết \(\frac{3a+7b}{7a+3b}\)=1
Tính A = -a+b-1 biết: \(\frac{3a+7b}{7a+3b}=1\)
\(\frac{3a+7b}{7a+3b}=1\)
<=> 3a + 7b = 7a + 3b
<=> 3a - 7a = 3b - 7b
<=> -4a = -4b
<=> a = b
Thay a = b vào, ta có:
A = - a + a - 1
=> A = 1
Tính giá trị của biểu thức A= -a+b-1, biết 3a+7b/7a+3b =1
Tính giá trị của biểu thức A=-a+b-1 biết:(3a+7b)/(7a+3b)=1
Tính giá trị biểu thức A = \(-a+b-1\)
Biết rằng : \(\frac{3a+7b}{7a+3b}=1\)
\(\frac{3a+7b}{7a+3b}=1\)
=> 3a + 7b = 7a + 3b
=> 3a - 3b = 7a - 7b
=> 3(a - b) = 7(a - b)
=> 7(a - b) - 3(a - b) = 0
=> 4(a - b) = 0
=> a - b = 0
=> a = b
Ta có : A = -a + b - 1
=> A = -a + a - 1
=> A = -1
cick mình nha bạn
Tính giá trị của biết A =-a+b-1 biết \( 3a+7b/7a+3b=1\)
Cho 3a+7b/7a+3b =1 tinh C=-a+b-1
\(\dfrac{3a+7b}{7a+3b}=1\Leftrightarrow3a+7b=7a+3b\)
\(\Leftrightarrow3a=7a+3b-7b\)
\(\Leftrightarrow3a=7a-4b\)
\(\Leftrightarrow4b=7a-3a\)
\(\Leftrightarrow4b=4a\Leftrightarrow a=b\)
Như vậy \(C=-a+b-1=-a+a-1=0-1=-1\)
Tính giá trị của biểu thức A = -a+b-1 biết 3a+7b/ 7a + 3b = 1
Cho a, b, c dương thỏa abc = 1. Chứng minh: \(\frac{1}{a^3\left(7b+3c\right)}+\frac{1}{b^3\left(7c+3a\right)}+\frac{1}{c^3\left(7a+3b\right)}\ge\frac{1}{10}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng BĐT Svacxo ta có :
\(\frac{1}{a^3\left(7b+3c\right)}+\frac{1}{b^3\left(7c+3a\right)}+\frac{1}{c^3\left(7a+3b\right)}=\frac{\frac{1}{a^2}}{7ab+7ac}+\frac{\frac{1}{b^2}}{7bc+3ab}+\frac{\frac{1}{c^2}}{7ac+3bc}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{10\left(ab+bc+ca\right)}=\frac{1}{10}.\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{ab+bc+ca}=\frac{1}{10}.\left(ab+bc+ca\right)\)
\(=\frac{1}{10}.\frac{ab+bc+ca}{abc}=\frac{1}{10}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
cho a/b=c/d chứng minh
(3a+6c)(7b-4d)=(3b+6d)(7a-4c)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a}{3b}=\dfrac{6c}{6d}=\dfrac{3a+6c}{3b+6d}\)(1)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{7a}{7b}=\dfrac{4c}{4d}=\dfrac{7a-4c}{7b-4d}\)(2)
Từ (1) và (2) suy ra \(\dfrac{3a+6c}{3b+6d}=\dfrac{7a-4c}{7b-4d}\)
\(\Leftrightarrow\left(3a+6c\right)\left(7b-4d\right)=\left(3b+6d\right)\left(7a-4c\right)\)