Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
titanic
Xem chi tiết
NGUYỄN THẾ HIỆP
22 tháng 2 2017 lúc 18:20

pt <=> \(x\left(y^2+2y+1\right)=32y\)

\(\Leftrightarrow x\left(y+1\right)^2=32y\)

\(\Leftrightarrow\frac{x}{y}.\left(y+1\right)^2=32\)

do x,y \(\in\)N* => y+1>1

\(\Leftrightarrow\frac{x}{y}.\left(y+1\right)^2=2.4^2=8.2^2\)

TH1: \(\hept{\begin{cases}\frac{x}{y}=2\\y+1=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=3\end{cases}}\)

TH2: \(\hept{\begin{cases}\frac{x}{y}=8\\y+1=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=8\\y=1\end{cases}}\)

Vậy (x,y)=...

titanic
Xem chi tiết
Deaf kev
22 tháng 2 2017 lúc 14:39

xy2 + 2xy + x = 32y

xy2 + 2xy - 32y + x = 0

<=> x = 32y/ ( y2 + 2y + 1)  = 32/ (y + 1) - 32/( y + 1)2

x nguyên khi (y+1)^2 là ước của 32 => (y+1)^2 = 1,4,16

=> y + 1 = 1,2,4 vì y nguyên dương 

=>y = 0( loại ) ; 1;3

=> x

Trần ngô hạ uyên
Xem chi tiết
Phùng Gia Bảo
25 tháng 10 2019 lúc 22:31

\(xy^2+2xy+x=32y\)

\(x\left(y+1\right)^2=32y\)

\(\Rightarrow x=\frac{32y}{\left(y+1\right)^2}\)

Vì \(\left(y,\left(y+1\right)^2\right)=1\)và \(x\inℤ\)\(\Rightarrow\left(y+1\right)^2\inƯ\left(32\right)=Ư\left(2^5\right)=\left\{2^2;2^4\right\}\)

\(Khi\left(y+1\right)^2=2^2=4\Rightarrow\orbr{\begin{cases}y+1=2\\y+1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-3\end{cases}}\)

\(\cdot y=1\Rightarrow x=\frac{32.1}{4}=8\)        

\(\cdot y=-3\Rightarrow x=\frac{32.\left(-3\right)}{4}=-24\)

\(Khi\left(y+1\right)^2=2^4=16\Rightarrow\orbr{\begin{cases}y+1=4\\y+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}}\)

\(\cdot y=3\Rightarrow x=\frac{32.3}{16}=6\)

\(\cdot y=-5\Rightarrow x=\frac{32.\left(-5\right)}{16}=-10\)

Vậy nghiệm phương trình \(\left(x;y\right)=\left(8;1\right);\left(-24;-3\right);\left(6;3\right);\left(-10;-5\right)\)

Khách vãng lai đã xóa
Nguyễn Minh Phương
Xem chi tiết
Arata Trinity Seven
Xem chi tiết

Bài làm

\(xy^2+2xy+x=32y\)

\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)

\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)

\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)

\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)

Để x là số nguyên dương thì 

\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)\(\left(y+1\right)^2\)là số chính phương 

\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)

\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)

\(\Leftrightarrow y=\left\{0;1;3\right\}\)

Vì y là số nguyên dương 

Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)

Vậy   x = 8; y = 1

hoặc x = 6; y = 3

# Chúc bạn học tốt #

Nguyễn Linh Chi
15 tháng 7 2019 lúc 8:13

Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.

Dương Thị Thu Ngọc
Xem chi tiết
Aki Tsuki
19 tháng 8 2018 lúc 6:26

\(xy^2+2xy+x=32y\)

\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)

\(\Leftrightarrow x=\dfrac{32y}{y^2+2y+1}\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

\(\Leftrightarrow x=\dfrac{32}{y+1}-\dfrac{32}{\left(y+1\right)^2}\)

Để x nguyên dương thì

\(\left(y+1\right)^2\inƯ\left(32\right)\)\(\left(y+1\right)^2\) là số chính phương

=> \(\left(y+1\right)^2=\left\{1;4;16\right\}\)

\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)

\(\Leftrightarrow y=\left\{0;1;3\right\}\) vì y nguyên dương nên: \(\left[{}\begin{matrix}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{matrix}\right.\)

Vậy(x;y) = {8;1) ; (6;3)

TTH CHANEL
Xem chi tiết
Vũ Tri Hải
16 tháng 6 2017 lúc 8:32

X(y3 + 2y + 1) = 32y

Vì (y3 + 2y + 1; y) = 1 nen 32 \(⋮\)chia hết cho y3 + 2y + 1.

Đến đây tự giải nhé.

TTH CHANEL
17 tháng 6 2017 lúc 6:14

ủa bạn cái đoạn \(\left(y^3+2y+1;y\right)=1\)   dấu chấm phẩy “;” nghĩa là sao ?

Chirikatoji
30 tháng 3 2018 lúc 17:19

; là dấu ngăn cách 2 số đó đó

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2021 lúc 21:06

a.

\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

Do y và y+1 nguyên tố cùng nhau  \(\Rightarrow32⋮\left(y+1\right)^2\)

\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)

\(\Rightarrow...\)

b.

\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)

\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)

Lại có:

\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)

\(\Rightarrow4b+1⋮d\) (2)

 (1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)

Bùi Đức Anh
Xem chi tiết
Trang Triệu
22 tháng 1 2021 lúc 20:49

Ta có: \(xy^2+2xy+x=32y \)

⇔ \(x\left(y^2+2y+1\right)=32y\)

\(x=\dfrac{32y}{\left(y+1\right)^2}\) 

\(x=\dfrac{32y-32+32}{\left(y+1\right)^2}\)

 

\(x=\dfrac{32\left(y+1\right)}{\left(y+1\right)^2}-\dfrac{32}{\left(y+1\right)^2}\)

\(x=\dfrac{32}{y+1}-\dfrac{32}{\left(y+1\right)^2}\)

Để x là số dương ⇒ \(\left(y+1\right)^2\)∈ \(U_{\left(32\right)}\)={-32 ;-16;-8;-4;-2;-1;1;2;4;8;16;32}

Nhưng \(\left(y+1\right)^2\)là số chính phương ⇒ \(\left(y+1\right)^2\)∈ {1;4;16}

\(\left[{}\begin{matrix}\left(y+1\right)^2=1\\\left(y+1\right)^2=4\\\left(y+1\right)^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y+1=1\\y+1=2\\y+1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\\y=3\end{matrix}\right.\)  

Thay :

y = 0 ⇒ x = 0

y = 1 ⇒ x = 8

y = 3 ⇒ x = 6

Vậy x;y = ( 0;0) ; ( 8;1) ; ( 6;3)