Cho a,b,c là những số nguyên dương thỏa mãn \(\left\{\begin{matrix}a+b+c=20\\16a+2b+c=80\end{matrix}\right.\)
Tính H = 25a-4b-2007c
Cho a,b,c là các số nguyên dương thỏa mãn: \(\left\{{}\begin{matrix}a+b+c=20\\16a+2b+c=80\end{matrix}\right.\). Hãy tính giá trị của M=25a-4b-2007c
Giúp hộ!
Cho a,b,c là những số nguyên dương thỏa mãn: \(\hept{\begin{cases}a+b+c=20\\16a+2b+c=80\end{cases}}\). Hãy tính giá trị của biểu thức \(M=25a-4b-2007c\).
Ta có: \(\hept{\begin{cases}a+b+c=20\\16a+2b+c=80\end{cases}}\)
=> \(\left(16a+2b+c\right)-\left(a+b+c\right)=80-20=60\)
=> \(15a+b=60\)
=> b = 60 - 15 a
Mà a; b; c là số nguyên dương => a \(\in\){ 1; 2; 3; }
Khi đó: \(a+b+c=a+60-15a+c=20\)
=> \(c=14a-40\)
+) Với a = 1 => c = -26 ( loại )
+) Với a = 2 => c = -12 loại
+) Với a = 3 => c = 2 ( nhận ) khi đó b = 15
Vậy : M = 25.3 - 4.15 -2007.2= -3999.
Cho a,b,c \(\in\) N*, thỏa mãn\(\left\{{}\begin{matrix}a+b+c=20\\16a+2b+c=80\end{matrix}\right.\)
Hãy tính giá trị của biểu thức M= 25a-4a-2007c
\(\left\{{}\begin{matrix}a+b+c=20\\16a+2b+c=80\end{matrix}\right.\)\(\) \(\left\{{}\begin{matrix}a+b+c=20\\16a+b=60\end{matrix}\right.\)
\(\left\{{}\begin{matrix}b=60-15a\\c=14a-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}60-15a>0\Rightarrow a< 4\\14a-40>0\Rightarrow a\ge3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=15\\c=2\end{matrix}\right.\)
Thay vào => M
"mình nghi ngờ biểu thức M của bạn sai"
a, Cho \(f\left(x\right)=ax^2+bx+c\). Biết \(a+c=2^{2006}\) và \(b=2^{2006}\). Tính giá trị biểu thức \(A=f\left(-1\right)+f\left(1\right)\) và \(B=f\left(1\right)-f\left(-1\right)\)
b, Cho a,b,c là các số nguyên dương thỏa mãn: \(\left\{{}\begin{matrix}a+b+c+20\\16+2b+c=80\end{matrix}\right.\). Hãy tính giá trị của M=25a-4b-2007c
\(f\left(1\right)=a\cdot1^2+b\cdot1+c=a+c+b=2^{2006}+2^{2006}=2\cdot2^{2006}=2^{2007}\\ f\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a+c-b=2^{2006}-2^{2006}=0\\ A=f\left(-1\right)+f\left(1\right)=0+2^{2007}=2^{2007}\\ B=f\left(1\right)-f\left(-1\right)=2^{2007}-0=2^{2007}\)
Câu b xem lại đề
1. Tìm x biết:
x+*x*=2x (chú ý * là dấu giá trị tuyệt đối)
2.CHo a,b,c thuộc Z+ thỏa mãn:
a+b+c=20
16a+2b+c=80
Tìm giá trị của M=25a-4b-2007c
2) Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
Cho a, b, c là 3 số nguyên dương thỏa mãn a + b + c = 20 và 16a + 2b + c = 80. Tìm a, b, c
Cho a,b,c là 3 số nguyên dương thỏa mãn: a+b+c=20 và 16a+2b+c=80. Tìm a,b,c
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
Cho \(a\ge1,\) \(b\ge1\), \(c\ge1\) thỏa mãn : \(\left\{{}\begin{matrix}log_{ac}\left(b^2+1\right)+log_{2bc}a=\dfrac{2}{3}\\log_{2ab}c\le1\end{matrix}\right.\) . Tính tổng \(S=a^2+b^2+c^2\)