Giải phương trình:
x^4+7x^2-12x+5=0
Giải các bất phương trình bậc hai sau:
a) \(2{x^2} - 5x + 3 > 0\)
b) \( - {x^2} - 2x + 8 \le 0\)
c) \(4{x^2} - 12x + 9 < 0\)
d) \( - 3{x^2} + 7x - 4 \ge 0\)
a) Ta có \(a = 2 > 0\) và \(\Delta = {\left( { - 5} \right)^2} - 4.2.3 = 1 > 0\)
=> \(2{x^2} - 5x + 3 = 0\) có 2 nghiệm phân biệt \({x_1} = 1,{x_2} = \frac{3}{2}\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} - 5x + 3\) mang dấu “+” là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình \(2{x^2} - 5x + 3 > 0\) là \(\left( { - \infty ;1} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)
b) Ta có \(a = - 1 < 0\) và \(\Delta ' = {\left( { - 1} \right)^2} - \left( { - 1} \right).8 = 9 > 0\)
=> \( - {x^2} - 2x + 8 = 0\)có 2 nghiệm phân biệt \({x_1} = - 4,{x_2} = 2\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - {x^2} - 2x + 8\) mang dấu “-” là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)
Vậy tập nghiệm của bất phương trình \( - {x^2} - 2x + 8 \le 0\) là \(\left( { - \infty ; - 4} \right] \cup \left[ {2; + \infty } \right)\)
c)
Ta có \(a = 4 > 0\) và \(\Delta ' = {\left( { - 6} \right)^2} - 4.9 = 0\)
=> \(4{x^2} - 12x + 9 = 0\) có nghiệm duy nhất \(x = \frac{3}{2}\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(4{x^2} - 12x + 9\) mang dấu “-” là \(\emptyset \)
Vậy tập nghiệm của bất phương trình \(4{x^2} - 12x + 9 < 0\) là \(\emptyset \)
d) \( - 3{x^2} + 7x - 4 \ge 0\)
Ta có \(a = - 3 < 0\) và \(\Delta = {7^2} - 4.\left( { - 3} \right).\left( { - 4} \right) = 1 > 0\)
=> \( - 3{x^2} + 7x - 4 = 0\) có 2 nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{4}{3}\).
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 7x - 4\) mang dấu “+” là \(\left[ {1;\frac{4}{3}} \right]\)
Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 7x - 4 \ge 0\) là \(\left[ {1;\frac{4}{3}} \right]\)
Giải phương trình:
a. \(x^4+7x^2-12x+5=0\)
b. \(3|x-3|-2|x-2|+|x-1|=4\)
Giải các phương trình sau:
a) x − 1 = 3 x − 5 ;
b) x + 1 2 + 1 x + 3 = 0 ;
c) 3 x 2 − 4 x − 7 = 0 ;
d) 7 x − 1 2 x + 1 + 2 x + 1 x 2 − 1 = 0 .
Giải phương trình
\(\left(12x^2-3\right)\left(x+3\right)+\left(12x^2+7x+3\right)\left(x-3\right)=0\)
giải phương trình
a , x2 - 7x + 6 = 0
b, 2x2 - 3x -5 = 0
c, 4x2 - 12x + 5 = 0
d, x4 - x3 + 2x2 - x +1 = 0
mik cần gấp
a, <=> (x-1).(x-6) = 0
<=> x=1 hoặc x=6
b, <=> (x+1).(2x-5) = 0
<=> x=-1 hoặc x=5/2
c, <=> (2x-5).(2x-1) = 0
<=> x=5/2 hoặc x=1/2
d, <=> (x^2-x+1).(x^2+1) = 0
=> pt vô nghiệm vì x^2-x+1 và x^2+1 đều > 0
Tk mk nha
a) x2 - 7x + 6 = 0
<=> x2 - 6x - x + 6 = 0
<=>( x - 6 ) ( x - 1 ) = 0
<=> x - 6 = 0 hoặc x - 1 = 0
1. x - 6 = 0
<=> x = 6
2. x - 1 = 0
<=> x = 1
Vậy ......
b) 2x2 - 3x - 5 = 0
<=> 2x2 + 2x - 5x - 5 = 0
<=> ( x + 1 ) ( 2x - 5 ) = 0
<=> x + 1 = 0 hoặc 2x - 5 = 0
1. x + 1 = 0
<=> x = -1
2. 2x - 5 = 0
<=> x = 2.5
Vậy ............
c) 4x2 - 12x + 5 = 0
<=> 4x2 - 2x - 10x + 5 = 0
<=> 2x ( 2x - 1 ) - 5( 2x - 1 ) = 0
<=> ( 2x - 1 ) ( 2x - 5 ) = 0
<=> 2x - 1 = 0 hoặc 2x - 5 = 0
1. 2x - 1 = 0
<=> x = 0.5
2. 2x - 5 = 0
<=> x = 2.5
Vậy ....................
d) x4 - x3 + 2x2 - x + 1 = 0
a) \(x^2-6x-x+6=0\)
\(x\left(x-6\right)-\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\)
b) \(2x^2+2x-5x-5=0\)
\(2x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-1\end{cases}}\)
c) \(4x^2-12x+5=0\)
\(4x^2-2x-10x+5=0\)
\(2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{1}{2}\end{cases}}\)
giải phương trình:
a, x^3 - 5x^2 + 6x - 4=0
b,x^3 - 7x + 6=0
c, x^3 + 8x^2 + 17x + 10=0
d,x(x+1)(x+2)(x+3) = -1
e, (4x+1)(12x-1)(3x+2)(x+1)=4
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
Giải các phương trình và hệ phương trình sau :
1. \(3x^2-7x+2=0\)
2. \(x^4-5x+4=0\)
3. \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{matrix}\right.\)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
Giải các phương trình sau:
a \(x^4=5x^2+2x-3\)
b \(x^4=6x^2+12x+10\)
c \(3x^3+3x^2+3x=-1\)
d \(8x^3-12x^2+6x-5=0\)