Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Huy Tú
10 tháng 3 2021 lúc 12:59

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

Khách vãng lai đã xóa
Ngô Chi Lan
10 tháng 3 2021 lúc 20:03

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

Khách vãng lai đã xóa
Trịnh Quỳnh Anh
30 tháng 3 2021 lúc 19:20
a=(a+y)(y+a)=a+a-a
Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Như Trần khánh
Xem chi tiết
Như Trần khánh
16 tháng 11 2021 lúc 22:49

làm ơn trả lời hộ mk với ah mai mk phải nộp bài r

gianroi

Nguyễn Minh Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 10:20

loading...  loading...  

Nguyễn Thị Hoa
Xem chi tiết
Lê Quang Huy
17 tháng 12 2016 lúc 20:32

P=3a-2b\2a+5 + 3b-a\b-5

=2a+a-2b\2a-5 + -a+2b+b\b-5

=2a+(a-2b)\2a-5 + -(a-2b)+b

=2a+5\2a-5 + -5+b\b-5

=-(2a-5)\(2a-5) + (b-5)\(b-5)

=-1+1=0

Lê Quang Huy
17 tháng 12 2016 lúc 20:35

Bài của mình đây , ko biết có đúng ko

Nguyễn Minh Thọ
Xem chi tiết
lion messi
Xem chi tiết
Nhật Hạ
18 tháng 3 2020 lúc 17:09

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

Khách vãng lai đã xóa
#Tùng#
Xem chi tiết
Huy^11ngón@_@
1 tháng 2 2021 lúc 15:29

ta có : 3/a+b=2/b+c=1/c+a=>a+b/3=b+c/2=c+a/1

=a+b-b-c/3-2=a-c/1

=>c+a=a-c=>c=0=>b=2a

thay c=0;b=2a vào M ta đc:

M=2a+3.2a+2020.0/3a+2.2a-2021.0=8a/7a=8/7

ok

Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Duy Khang
30 tháng 12 2020 lúc 22:45

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)

\(\rightarrow a=2k;b=3k;c=4k\)

\(M=\dfrac{3a+2b-4c}{8a-5b+2c}\\ =\dfrac{3.2k+2.3k-4.4k}{8.2k-5.3k+2.4k}\\ =\dfrac{6k+6k-8k}{16k-15k+8k}\\ =\dfrac{4k}{9k}=\dfrac{4}{9}\)

Vậy \(M=\dfrac{4}{9}\)