If x - y - z = 0 and x + 2y - 10z = 0, z ≠ 0 then the value of is ............
If x-y-z=0 và x+2y-10z=0,z khác 0 then the value of B=(2x^2+4xy)/(y^2+z^2)
, \(B=\frac{2x^2+4xy}{y^2+z^2}=\frac{2x\left(x+2y\right)}{y^2+z^2}\)
\(\hept{\begin{cases}x-y-z=0\\x+2y-10z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=z\\x+2y=10z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4z\\y=3z\end{cases}}\)
Thay vào B, ta được: \(B=\frac{2.\left(4z\right)^2+4.4z.3z}{\left(3z\right)^2+z^2}=\frac{2.4^2+3.4^2}{3^2+1}=8\)
=>
Cho a+b+c=0 và a2 +b2 +c2 =1.Tìm a4+b4+c4.
If x - y - z = 0 and x + 2y - 10z = 0, z ≠ 0 then the value of is ............
\(\left\{{}\begin{matrix}x-y-z=0\\x+2y-10z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=3z\\x=y+z=4z\\x+2y=10z\end{matrix}\right.\)
\(B=\dfrac{2x^2+4xy}{y^2+z^2}=\dfrac{2x\left(x+2y\right)}{9z^2+z^2}=\dfrac{2.4z.10z}{10.z^2}=8\)
Find the value of expresssion x2 + y2 + z2, if x+y+z = 5 and \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) + \(\dfrac{1}{z}\)= 0
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
$\Rightarrow xy+yz+xz=0$
Khi đó:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=5^2-2.0=25$
Nếu x - y - z = 0 and x +2y - 10z = 0 . Tính \(B=\frac{2x^2+4xy}{y^2+z^2}\)
x-y-z=0 =>x-y=z => 2x - 2y =2z (1)
x+2y-10z=0 => x+2y =10z (2)
Cộng 2 vế (1) và (2) : =>3x=12z => x=4z
Thay x=4z vào x-y-z=0 ta đc:
4z-y-z=0 => 3z-y=0 => y=3z
Thay x=4z;y=3z vào B ta tính đc B=8
Cho x-y-z=0 và x+2y-10z=0;z khác 0 .Tính giá trị của B=2x^2+4xy/y^2+z^2
Find the maximum value of \(M=\frac{x}{2x+y}+\frac{y}{2y+z}+\frac{z}{2z+x}\) , x,y,z > 0
Ta có
\(1-\frac{2x}{2x+y}=1-\frac{2xy}{2xy+y^2}=\frac{y^2}{2xy+y^2}\left(1\right)\)
Ta lại có
\(\frac{y^2}{2xy+y^2}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1-\frac{2x}{2x+y}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(3\right)\)
Tương tự
\(1-\frac{2y}{2y+z}+\frac{2yz+z^2}{\left(x+y+z\right)^2}\ge\frac{2z}{\left(x+y+z\right)}\left(4\right)\)
\(1-\frac{2z}{2z+x}+\frac{2xz+x^2}{\left(x+y+z\right)^2}\ge\frac{2x}{x+y+z}\left(5\right)\)
Lấy (3) + (4) + (5) vế theo vế ta được
\(3-2M+\frac{2\left(xy+yz+zx\right)+x^2+y^2+z^2}{\left(x+y+z\right)^2}\ge\frac{2\left(x+y+z\right)}{x+y+z}\)
\(\Leftrightarrow3-2M+1\ge2\)
\(\Leftrightarrow M\le1\)
Dấu = xảy ra khi \(x=y=z\)
If x, y, z satisfy these equations yz = 3/2 - x2/2; zx = 1/2 - y2/2 and xy = 5/2 - z2/2 then the value of Ιx + y + zΙ is ...........
nếu x-y-z=0 và x+2y-10z=0 , z khác 0 tính B=\(\frac{2x^2+4xy}{y^2+z^2}\)
Mình không biết! Xin lỗi nha! Nhớ tk mình! ~ Chúc bạn học giỏi ~ tth~ xin hết!
2x=3y=10z-2x và x-y+z= -33
3x-2y=0, 4y-3z=2z và x+y+z= -39