Chứng minh :
\(\frac{a}{b}=\frac{-a}{-b}\) \(\frac{a}{-b}=\frac{-a}{b}\)
Giải chi tiết nhaa
Cho \(\frac{a}{c}=\frac{c}{b}\). Chứng minh rằng:
a, \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
b, \(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\)
giúp mình giải chi tiết với các bạn ơi
\(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
a, \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
b, \(\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)
Mình gọi a1,a2,a3,a4 là a,b,c,d nha
Ta có: \(\hept{\begin{cases}b^2=a\cdot c\\c^2=b\cdot d\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}=\frac{a}{d}\)\(\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)\(\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)(\(\left(ĐPCM\right)\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)Chứng minh rằng \(\frac{1}{a^{1995}}+\frac{1}{b^{1995}}+\frac{1}{c^{1995}}=\frac{1}{a^{1995}+b^{1995}+c^{1995}}\)
Giải chi tiết jum vs.........
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)Chứng minh rằng \(\frac{1}{a^{1995}}+\frac{1}{b^{1995}}+\frac{1}{c^{1995}}=\frac{1}{a^{1995}+b^{1995}+c^{1995}}\)
Giải chi tiết jum vs.........
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=-\frac{a+b}{c\left(a+b+c\right)}\)=> a = -b hoặc ab +c(a+b+c) =0
+ a = -b => thay => dpcm
+ab + c(a+b+c) =0 =>(a+c)(b+c) =0 => a =-c hoạc b =-c thay => dpcm
Cho các số thực a,b,c>0 thoae mãn a+b+c=3. Chứng minh:
\(N=\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge6\)
các bạn giải chi tiết ra giùm mình nha! mình cảm ơn nhiều !
\(N=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)
\(\ge\frac{27}{2\left(a+b+c\right)}+\frac{\left(a+b+c\right)}{2}=6^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b =c = 1
Ta có đánh giá \(\frac{3+a^2}{3-a}\ge2a\) \(\forall a:0< a< 3\)
Thật vật, biến đổi tương đương: \(\Leftrightarrow3+a^2\ge2a\left(3-a\right)\Leftrightarrow3\left(a-1\right)^2\ge0\) (luôn đúng)
Tương tự: \(\frac{3+b^2}{3-b}\ge2b\) ; \(\frac{3+c^2}{3-c}\ge2c\)
Cộng vế với vế: \(N\ge2\left(a+b+c\right)=6\)
\("="\Leftrightarrow a=b=c=1\)
Ta có:
\(\frac{3+a^2}{b+c}=\frac{a^2+a+b+c}{b+c}=\frac{a^2+a}{b+c}+1=\frac{a^2}{b+c}+\frac{a}{b+c}+1\)
Tương tự,ta có:
\(\frac{3+b^2}{a+c}=\frac{b^2}{a+c}+\frac{b}{a+c}+1\)
\(\frac{3+c^2}{a+b}=\frac{c^2}{a+b}+\frac{c}{a+b}+1\)
Cộng vế theo vế của các đẳng thức,ta có:
\(N=3+\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+a}\right)\)
Áp dụng BĐT Cauchy-schwarz và BĐT Nesbitt,ta có:
\(N\ge3+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{3}{2}\)
\(=6\left(đpcm\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\left(a,b,c>0\right)\)
GIẢI CHI TIẾT CÁC BƯỚC GIÙM MIK NHÉ!!!
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3=\left(\frac{a}{b}+\frac{a}{a}\right)+\left(\frac{b}{c}+\frac{b}{b}\right)+\left(\frac{c}{a}+\frac{c}{c}\right)\)
\(=a\left(\frac{1}{a}+\frac{1}{b}\right)+b\left(\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\ge a.\frac{4}{a+b}+b.\frac{4}{b+c}+c.\frac{4}{c+a}=4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
Dấu "=" <=> a = b = c
chứng minh bất đẳng thức sau ;
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8\) với \(\left(\forall a,b,c>0\right)\)
các bạn giải chi tiết ra giùm mình nhé! cảm ơn nhiều à nhen !
Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)
Dau '=' xay ra khi \(a=b=c\)
Cho M = \(\frac{a}{a+b}\) + \(\frac{b}{b+c}\) + \(\frac{c}{c+a}\) với a, b, c là các số nguyên dương bất kì. Chứng minh rằng M ko thể là số nguyên.
Giải chi tiết giúp mk nhé mọi người!!
Tính chất tỉ số:
Cho x, y, z > 0; x/y < 1 ta có: x / y < (x+z) / (y+z) (*)
cm:
(*) <=> x(y+z) < y(x+z) <=> xy+xz < yx+yz <=> xz < yz <=> x < y đúng do gt x < y
với các số dương a, b, c ta có: a < a+b ; b < b+c ; c < c+a
=> a/(a+b) < 1 ; b/(b+c) < 1 ; c/(c+a) < 1; ad (*) ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) < (a+c)/(a+b+c) + (b+a)/(b+c+a) + (c+b)/(c+a+b)
=> A < 2(a+b+c)/(a+b+c) = 2
mặt khác ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(b+c+a) + c/(c+a+b)
=> A > (a+b+c)/(a+b+c) = 1
1 < A < 2 => A không là số nguyên
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Giups mình nha giải chi tiết nhá. mình sắp nộp rùi
Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\) => \(\frac{a}{c}\)=\(\frac{b}{d}\)
Ta có: \(\frac{a}{c}\)=\(\frac{b}{d}\)\(\Rightarrow\)\(\frac{5a+3b}{5c+3d}\)=\(\frac{5a-3b}{5c-bd}\)
\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\) (đpcm)
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)
giải chi tiết giùm minh nha !!!
\(S=1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+...+\frac{1}{\left(-3\right)^{n-1}}+... \)\(A=\frac{2}{3}--B=\frac{4}{3}--C=\frac{3}{2}--D=\frac{3}{4}\)
S là tổng cấp số nhân vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-\frac{1}{3}\end{matrix}\right.\)
Theo công thức ta có: \(S=\frac{u_1}{1-q}=\frac{1}{1-\left(-\frac{1}{3}\right)}=\frac{3}{4}\)