Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\) => \(\frac{a}{c}\)=\(\frac{b}{d}\)
Ta có: \(\frac{a}{c}\)=\(\frac{b}{d}\)\(\Rightarrow\)\(\frac{5a+3b}{5c+3d}\)=\(\frac{5a-3b}{5c-bd}\)
\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\) (đpcm)
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right)\)