Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiên tiên
Xem chi tiết
mr. killer
20 tháng 12 2021 lúc 22:04

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
17 tháng 5 2017 lúc 9:14

Gọi điểm D(x,y) là điểm cần tìm.
Tứ giác ABCD là hình bình hành khi và chỉ khi: \(\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}\left(2;4\right)\); \(\overrightarrow{DC}\left(-4-x;1-y\right)\).
\(\overrightarrow{AB}=\overrightarrow{DC}\)\(\Leftrightarrow\left\{{}\begin{matrix}-4-x=2\\1-y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)\(\Leftrightarrow D\left(-6;-3\right)\).

Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 1:21

I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)

\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:

\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)

Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)

B là giao điểm AB và BC nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)

I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)

Nguyễn Ngọc Thảo
Xem chi tiết
ngonhuminh
10 tháng 12 2016 lúc 15:29

 vì trên diễn đàn này toàn câu hỏi hồi rác 
ok bạn thực ra mình cũng chang cần k đâu.

nhung mat cong tra loi cho mot nguoi hoi linh tinh that chan 

Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 0:44

\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)

\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:

\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)

Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)

Phương trình đường thẳng d qua M và vuông góc AB có dạng:

\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)

Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân

Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2017 lúc 2:11

Gọi D(x; y)

Ta có A D → = x + 2 ; y  và B C → = 4 ; − 3 .

Vì ABCD là hình bình hành nên A D → = B C →  

x + 2 = 4 y = − 3 ⇔ x = 2 y = − 3 ⇒ D 2 ; − 3 .

Chọn A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2017 lúc 4:42

Vì OABC là hình bình hành nên 

Suy ra số phức  z 2 = 2 + 3 i  có điểm biểu diễn là B.

 Chọn B.

Đặng Thị Hạnh
Xem chi tiết
Phạm Thảo Vân
9 tháng 4 2016 lúc 16:19

B A K H C E I D

Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.

Gọi I là giao điểm của AC và BD

Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)

Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)

Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)

Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE

- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)

Do I thuộc (C) nên có phương trình :

\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)

- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :

\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)

- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)

Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)

Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)

Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)

Khanh linh Le nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 8:26

vecto AB=(-7;0)

vecto DC=(3-x;5-y)

Vì ABCD là hình bình hành

nên vecto AB=vecto DC

=>3-x=-7; 5-y=0

=>x=10; y=5

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2019 lúc 13:33

Đáp án B