Cho \(\frac{a+b}{2007}=\frac{b+c}{2008}=\frac{c+a}{2009}\)
CMR: 4(a-c)(b-a)=(c-b)2
CHO A=\(\frac{2008}{2009};b=\frac{2009}{2008};c=\frac{1}{2009};d=\frac{2007}{2008}\)
tính a - b + c + d
a-b+c+d=\(\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}=\left(\frac{2008}{2009}+\frac{1}{2009}\right)-\left(\frac{2009}{2008}-\frac{2007}{2008}\right)=1-\frac{2}{2008}=\frac{2006}{2008}=\frac{1003}{1004}\)
\(a-b+c+d=\frac{2008}{2009}-\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
\(=\left(\frac{2008}{2009}+\frac{1}{2009}\right)+\left(\frac{2007}{2008}-\frac{2009}{2008}\right)=\frac{2009}{2009}+\frac{-2}{2008}\)
\(=1+\frac{-1}{1004}=\frac{1004}{1004}+\frac{-1}{1004}=\frac{1003}{1004}\)
cho a =\(\frac{2008}{2009}\),b=\(\frac{2009}{2008}\),c=\(\frac{1}{2009}\),d=\(\frac{2007}{2008}\)tính a-b+c+d
\(a+b+c+d=\frac{2008}{2009}+\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\\ =\frac{2009}{2009}+\frac{4016}{2008}=1+2=3\)
Cho: a = \(\frac{2008}{2009}\) ; b = \(\frac{2009}{2008}\) ; c = \(\frac{1}{2009}\) ; d = \(\frac{2007}{2008}\)
Tìm : a - b+c+d
Có :\(a-b=\frac{2008}{2009}-\frac{2009}{2008}\)\(=\frac{2008^2-2009^2}{2008\cdot2009}=\frac{\left(2008-2009\right)\left(2008+2009\right)}{2008\cdot2009}\)
\(=\frac{-2008-2009}{2008\cdot2009}=-\frac{1}{2009}-\frac{1}{2008}\)
=>a-b+c+d=\(-\frac{1}{2009}-\frac{1}{2008}+\frac{1}{2009}+\frac{2007}{2008}\)
\(=-\frac{1}{2008}+\frac{2007}{2008}=\frac{2006}{2008}=\frac{1003}{1004}\)
A=\(\frac{\frac{2008}{2}+\frac{2007}{3}+\frac{2006}{4}+...+\frac{2008}{2009}}{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{1}{2008}}\)
tính số hữu tỉ \(\frac{A}{B}biết:A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}B=\frac{2008}{1}+\frac{2007}{1}+\frac{2006}{1}+...+\frac{2}{2007}+\frac{1}{2008}.\)
Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!
Cho a,b,c thỏa mãn:\(\frac{a}{2008}=\frac{b}{2009}=\frac{c}{2010}\), chứng minh rằng: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt \(\frac{a}{2008}=\frac{b}{2009}=\frac{c}{2010}=k\)
suy ra: \(a=2008k;\) \(b=2009k;\)\(c=2010k\)
Khi đó ta có: \(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2008k-2009k\right)\left(2009k-2010k\right)\)
\(=4k^2\)
\(\left(c-a\right)^2=\left(2010k-2008k\right)^2=4k^2\)
suy ra: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
p/s: tham khảo,
cho a,b,c khac 0 ; a++b+c khac 0 thoa man \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
CMR\(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ca+cb+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b\left(a+c\right)+c\left(a+c\right)\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow a^{2009}=-b^{2009}\)
\(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{c^{2009}}\) (1)
\(\frac{1}{a^{2009}+b^{2009}+c^{2009}}=\frac{1}{c^{2009}}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\) (đpcm)
Tính tỉ số \(\frac{A}{B}\)biết
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+..+\frac{2}{2007}+\frac{1}{2008}\)
Tính tỉ số \(\frac{A}{B}\), biết:
A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\)
B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)