Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!
Đề của bạn sai rồi: Phải là B = \(\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) chứ ?!
So Sánh
a,A= \(\frac{2008^{2008}+1}{2008^{2009}+1}\)và B=\(\frac{2008^{2007}+1}{2008^{2008}+1}\)
b, M=\(\frac{100^{100}+1}{100^{99}+1}\)và N= \(\frac{100^{101}+1}{100^{100}+1}\)
So sánh
\(A=\frac{2^{2008}-3}{2^{2007}-1}\) và \(B=\frac{2^{2007}-3}{2^{2006}-1}\)
Tìm x biết :
a) \(-\frac{2}{3}.x+4=-12\)
b) \(-\frac{3}{4}+\frac{1}{4}:x=-3\)
c) \(\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
d)\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
Tính :
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
Tìm x
\(\frac{x-7}{2005}+\frac{x-6}{2006}=\frac{x-5}{2007}+\frac{x-4}{2008}\)
tính \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2008}}\)
cho a,b,c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
tính f=\(\frac{a}{b}+c+\frac{b}{c}+a+\frac{c}{a}+b\)
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2002^2}\)
Chứng minh rằng A<\(\frac{1505}{2008}\)
CM rằng tổng P=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+.......+\frac{1}{3^{2006}}-\frac{1}{3^{2008}}< 0,1\)
Giúp mk vs nak!!!!!!!!!!!!!!!
Thanks nhìu nok!!!!!!!!!