Những câu hỏi liên quan
Nguyễn Hải Lâm
Xem chi tiết
Kudo Shinichi
5 tháng 2 2020 lúc 16:11

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)

Cộng theo từng vế 

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)

\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)

Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số :

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Vậy GTNN của \(A=\frac{1}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Linh Chi
5 tháng 2 2020 lúc 15:57

Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)

=> \(x+y+z\ge1\)

Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = y = z =1/3

Vậy min A = 1/2 <=> x = y = z = 1/3

Bình luận (0)
 Khách vãng lai đã xóa
Hồ Minh Phi
Xem chi tiết
Trúc Mai Huỳnh
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
Agami Raito
Xem chi tiết
dbrby
Xem chi tiết
Võ Hồng Phúc
24 tháng 10 2019 lúc 9:42
Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 10 2019 lúc 16:07

\(P=\sum\frac{\sqrt{\frac{1}{2}\left(x^2+y^2\right)+\frac{1}{2}\left(x+y\right)^2}}{4yz+1}\ge\frac{\sqrt{3}}{2}\sum\frac{x+y}{\left(y+z\right)^2+1}\)

Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow a+b+c=3\)

\(P=\frac{\sqrt{3}}{2}\sum\frac{a}{b^2+1}=\frac{\sqrt{3}}{2}\sum\left(a-\frac{ab^2}{b^2+1}\right)\ge\frac{\sqrt{3}}{2}\sum\left(a-\frac{ab^2}{2b}\right)\)

\(P\ge\frac{\sqrt{3}}{2}\left(a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\right)\)

\(P\ge\frac{\sqrt{3}}{2}\left(a+b+c-\frac{1}{6}\left(a+b+c\right)^2\right)=\frac{3\sqrt{3}}{4}\)

\(P_{min}=\frac{3\sqrt{3}}{4}\) khi \(a=b=c=1\) hay \(x=y=z=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Inuyasha
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Võ Nhật Lê
1 tháng 3 2017 lúc 17:12

=0,5

Vì có gtnn khi xy=yz=zx=1:9 => x=y=z=1:3

Thay số và tính được gtnn là A=0.5

Bình luận (0)
Thắng Nguyễn
1 tháng 3 2017 lúc 17:15

đây nhé Xem câu hỏi

Bình luận (0)
huỳnh minh quí
2 tháng 3 2017 lúc 15:14

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{2\left(x+y+z\right)}{2}=x+y+z\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\)( 1 )

Xét \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)( 2 )

Từ ( 1 ) và ( 2 )

 \(\Rightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{1}{2}\)

Vậy GTNN của  \(A=\frac{1}{2}\)

Bình luận (0)
Nguyen Duy Dai
Xem chi tiết
Tran Le Khanh Linh
21 tháng 8 2020 lúc 20:17

Bài này phải tìm GTLN chứ nhỉ?!

Bình luận (0)
 Khách vãng lai đã xóa