Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 12 2019 lúc 7:40

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét hai tam giác vuông BMD và CNE, ta có:

∠(BMD) = ∠(CNE) =90o

BD = CE (gt)

∠D =∠E (chứng minh trên)

Suy ra: ΔBMD= ΔCNE(cạnh huyền,góc nhọn)

Do đó,BM = CN ( hai cạnh tương ứng).

qlamm
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 22:29

a: Xét ΔADB và ΔAEC có 

AB=AC

\(\widehat{ADB}=\widehat{AEC}\)

DB=EC

Do đó: ΔADB=ΔAEC

Suy ra: AB=AC

hay ΔABC cân tại A

b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có 

BD=CE

\(\widehat{MDB}=\widehat{NEC}\)

Do đó: ΔMBD=ΔNCE

Suy ra: BM=CN

c: \(\widehat{IBC}=\widehat{MBD}\)(đối đỉnh)

\(\widehat{ICB}=\widehat{NCE}\)

mà \(\widehat{MBD}=\widehat{NCE}\)(ΔMBD=ΔNCE)

nên \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

_lynnz._
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 12:38

a: Xet ΔABD và ΔACE có

AD=AE
góc D=góc E

DB=EC

=>ΔABD=ΔACE

=>AB=AC

=>ΔABC cân tại A

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

góc MAB=góc NAC

=>ΔAMB=ΔANC

=>BM=CN

c: góc IBC=góc MBD

góc ICB=góc NCE
mà góc MBD=góc NCE
nên góc ICB=góc IBC

=>ΔIBC cân tại I

Nguyễn Thái An Thư
Xem chi tiết
Nguyễn Doãn Bảo
16 tháng 1 2016 lúc 20:04

cậu giỏi toán hình nhất lớp đúng ko

Nguyễn Thái An Thư
16 tháng 1 2016 lúc 20:08

trái lại là cực kì tệ...

 

ngọc ánh
Xem chi tiết
Lương Huyền Trang 6a1
Xem chi tiết
nguyễn thị  thùy anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
lê thị hương giang
18 tháng 5 2017 lúc 16:04

A D E I B C M N

a) Xét \(\Delta ABD\)\(\Delta ACE\) ,có :

AD = AE ( Tam giác ADE cân tại A )

\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A )

BD = CE ( gt )

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

=> AB = AC

=> \(\Delta ABC\) cân tại A

b) Xét \(\Delta BMD\)\(\Delta CNE\) ,có :

BD = CE ( gt )

\(\widehat{BMD}=\widehat{CNE}=90^0\)

\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A ) => \(\Delta BMD=\Delta CNE\left(ch-gn\right)\) => BM = CN c) Ta có : \(\widehat{MBD}=\widehat{NCE}\) ( \(\Delta BMD=\Delta CNE\) ) mà \(\widehat{MBD}=\widehat{IBC},\widehat{NCE}=\widehat{ICB}\) ( 2 góc đối đỉnh ) => \(\widehat{IBC}=\widehat{ICB}\) => Tam giác IBC cân tại I d) \(\Delta IAB=\Delta IAC\left(c.c.c\right)\) => \(\widehat{IAB}=\widehat{IAC}\) => AI là tia phân giác của góc BAC
Phạm Thảo Vân
1 tháng 2 2018 lúc 21:07

a) Xét ∆ADE cân tại A nên góc D = góc E

Xét ∆ABD và ∆ACE, ta có:

AD = AE (gt)

góc D = góc E (chứng minh trên)

DB = EC (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

Suy ra: AB = AC (hai cạnh tương ứng)

Vậy ∆ABC cân tại A.

b) Xét hai tam giác vuông BMD và CNE, ta có:

góc BMD=góc CNE=90o

BD = CE (gt)

góc D = góc E (chứng minh trên)

Suy ra: ∆BMD = ∆CNE (cạnh huyền, góc nhọn)

Suy ra: BM = CN (hai cạnh tương ứng)

c) Ta có: ∆BMD = ∆CNE (chứng minh trên)

Suy ra: góc DBM=góc ECN (hai góc tương ứng)

góc DBM=góc IBC (đối đỉnh)

góc ECN = góc ICB (đối đỉnh)

Suy ra: góc IBC=góc ICB hay ∆IBC cân tại I.

d) Xét ∆ABI và ∆ACI, ta có:

AB = AC (chứng minh trên)

IB = IC (vì ∆IBC cân tại I)

AI cạnh chung

Suy ra: ∆ABI = ∆ACI (c.c.c) ⇒ góc BAI=góc CAI (hai góc tương ứng)

Vậy AI là tia phân giác của góc BAC



Huỳnh Chí Nguyên
Xem chi tiết
Dễ Thương
27 tháng 2 2017 lúc 14:49

ab=12

Nguyễn Thị Minh Anh
Xem chi tiết