ab-ac+bc=c^2-1
Tìm a,b,c
cho a,b,c duong , a+b+c=1
a, tim Min A=1/(a^2+b^2) +1/(b^2+c^2) +1/(c^2+a^2) +1/ab +1/bc +1/ac
b, tìm Min B=1/(a^2+bc) +1/(b^2+ac) +1/(c^2+ab) +1/ab +1/bc +1/ac
\(a\text{) }\)Áp dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (a, b > 0). Dấu "=" xảy ra khi a = b.
\(\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\)
\(=6\left[\frac{1}{\left(a+b\right)^2}+\frac{27}{8}\left(a+b\right)+\frac{27}{8}\left(a+b\right)\right]-\frac{81}{2}\left(a+b\right)\)
\(\ge6.3\sqrt[3]{\frac{1}{\left(a+b\right)^2}.\frac{27}{8}\left(a+b\right).\frac{27}{8}\left(a+b\right)}-\frac{81}{2}\left(a+b\right)\)
\(=\frac{81}{2}-\frac{81}{2}\left(a+b\right)\)
Tương tự: \(\frac{1}{b^2+c^2}+\frac{1}{bc}\ge\frac{81}{2}-\frac{81}{2}\left(b+c\right)\)
\(\frac{1}{c^2+a^2}+\frac{1}{ca}\ge\frac{81}{2}-\frac{81}{2}\left(c+a\right)\)
Cộng theo vế ta được
\(A\ge3.\frac{81}{2}-81\left(a+b+c\right)=3.\frac{81}{2}-81=\frac{81}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}.\)
Vậy GTNN của A là \(\frac{81}{2}.\)
tìm a,b,c biết: 2/ab+ac=3/bc+ab=4/ac+bc và a+b+c=-23
Cho a;b;c>=0 thỏa mãn : \(3\left(a^2+b^2+c^2\right)+ab+bc+ac=12\)
Tìm min max của \(P=\dfrac{a^2+b^2+c^2}{a+b+c}+ab+bc+ac\)
Tìm các số tự nhiên a,b,c thỏa mãn : a mũ 2²+ab+ac=20.ab+b²+bc=180.ac+bc+c²=200
Cộng vế với vế ta có:
a^2+b^2+c^2+2(ab+bc+ca)=20+180+200 a^2+b^2+c^2+2(ab+bc+ca)=20+180+200
→(a+b+c)2=400→(a+b+c)2=400
→a+b+c=20→a+b+c=20 vì a,b,c∈N∗→a+b+c≥0a,b,c∈N∗→a+b+c≥0
Ta có:
a^2+ab+ac=20→a(a+b+c)=20→a⋅20=20→a=1a2+ab+ac=20→a(a+b+c)=20→a⋅20=20→a=1
ab+b^2+bc=180→b(a+b+c)=180→b⋅20=180→b=9ab+b2+bc=180→b(a+b+c)=180→b⋅20=180→b=9
ac+bc+c2=200→c(a+b+c)=200→c⋅20=200→c=10
ab-ac+bc=c^2-1
Tìm a b c
tính tổng sau:
1/(b-c)(a^2+ac-b^2-bc)+1/(c-a)(b^2+ab-c^2-ac)+1/(a-b)(c^2+bc-a^2-ab)
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
\(=\frac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(+\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=0\)
ab-ac+bc=c^2-1 tìm a/b
Cho abc=1.Tìm min P=\(\dfrac{ab}{a^5+b^5+ab}\)+\(\dfrac{bc}{b^5+c^5+bc}+\dfrac{ac}{c^5+a^5+ac}\)
Bài 1: Tìm các số hữu tỷ a, b, c biết:
a, ab = 3 / 5, bc = 4 / 5, ca = 3 / 4
b, a. ( a + b + c ) = -12; b. ( a + b + c ) = 18; c. ( a + b + c ) = 30
c, ab = c; bc = 4a; ac = 9b
Bài 2: Cho A bằng:
A = ( 1 / 22 - 1 ) . ( 1 / 32 - 1 ) . ( 1 / 42 - 1 ) ... ( 1 / 1002 - 1 )
So sánh A với - 1 / 2
Chú ý: " / " là phân số; " . " là dấu nhân cấp 2
@Uchiha_Shisui
CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ac} + \frac{1}{3} \geq \frac{8}{9}(\frac{a}{b+c} + \frac{b}{a+c} +\frac{c}{a+b})\)
CMR:\((1+a+b+c)(1+ab+bc+ac) \geq 4\sqrt{2(a+bc)(b+ac)(c+ab)}\)