Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Khắc
Xem chi tiết
Vũ Như Mai
20 tháng 1 2017 lúc 20:08

Đề kiểu gì v ta? Tính 3443 - 100 ra 3343 không chia hết cho 132 

ma kết đẹp zai
20 tháng 1 2017 lúc 20:08

S = 3443 - 100 

S = 3343 : 132=25 ( dư 43)

vậy không chứng minh được S chia hết cho 132.

Bùi Gia Chính
20 tháng 1 2017 lúc 20:17

34^43 chứ ko phải là 3443

Trần Thanh Tùng
Xem chi tiết
Nguyễn Hà Khắc
Xem chi tiết
Nguyễn Mạnh Đạt
20 tháng 1 2017 lúc 20:24

vì mình không biết

Trần Thị Thu Hương
Xem chi tiết
Bùi Thị Thu Thùy
Xem chi tiết
tôi thích hoa hồng
4 tháng 2 2017 lúc 21:18

342 đồng dư vs 100 (mod 132)

=> 3442 đồng dư vs 100 (mod 132)

=> 3443 đồng dư vs 100*34 đồng dư vs 100 (mod 132)

=> 3443-100 đồng dư vs 100-100 đồng dư vs 0 (mod 132)

Nguyễn Yến Nhi
Xem chi tiết
Vũ Quang Vinh
18 tháng 8 2017 lúc 6:48

Ta thấy:
a) \(35^6-35^5=35^5\cdot\left(35-1\right)=35^5\cdot34\)
Do 34 chia hết cho 34
=> 355 * 34 chia hết cho 34
=> 356 - 355 chia hết cho 34    ( đpcm )

b) \(43^4+43^5=43^4\cdot\left(1+43\right)=43^4\cdot44\)
Do 44 chia hết cho 44
=> 434 * 44 chia hết cho 44
=> 434 + 435 chia hết cho 44    ( đpcm )

Trần Bảo Hân
Xem chi tiết

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

Nguyễn Đức Trí
1 tháng 8 2023 lúc 9:29

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

Long Vũ Duy
Xem chi tiết
aepro888
15 tháng 4 2018 lúc 15:32

7^98(7^2-7+1)=43.7^98

nên biểu thức chia hết cho 43

Long Vũ Duy
15 tháng 4 2018 lúc 15:39

Cảm ơn bạn nhiều nha

Quang Anh Phùng
Xem chi tiết