Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Nguyễn Thị
Xem chi tiết
Akai Haruma
8 tháng 5 2023 lúc 23:56

Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$

$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$

$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương 

$\Rightarrow x+2023=0$

$\Leftrightarrow x=-2023$

Lương MInh Hiển
Xem chi tiết
Nguyệt Phượng
18 tháng 12 2018 lúc 22:29

Có: \(\left(x-2\right)^{2018}+\left|y^2-9\right|^{2017}=0\)

Suy ra: \(\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left|y^2-9\right|^{2017}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x-2=0\\\left|y^2-9=0\right|\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)

Hà Triệu Khánh Ly
19 tháng 12 2018 lúc 22:47

chưa chắc đã đúng đâu Nguyệt Phượng nhé
trường hợp của bạn chỉ dùng khi biểu thức trên là:(x-2)^2018* |y^2-9|^ 2017=0 thôi bạn nhé

Hoàng Xuân	Phương
Xem chi tiết
Đoàn Đức Hà
2 tháng 6 2021 lúc 16:05

\(7\left(x-2017\right)^2+y^2=23\Rightarrow7\left(x-2017\right)^2\le23\Leftrightarrow\left(x-2017\right)^2\le\frac{23}{7}\)

mà \(x\inℕ\Rightarrow\orbr{\begin{cases}x-2017=0\\x-2017=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2017\\x=2018\end{cases}}\)

Với \(x=2017\)thì \(y^2=23\)không có nghiệm tự nhiên.

Với \(x=2018\)thì \(7+y^2=23\Leftrightarrow y^2=16\Leftrightarrow y=4\)(vì \(y\inℕ\))

Vậy ta có nghiệm \(\left(x,y\right)=\left(2018,4\right)\).

Khách vãng lai đã xóa
Soái Ca Cô Đơn
Xem chi tiết
I HATE THIS LIFE
3 tháng 10 2017 lúc 15:39

BÀI 1 

STN nhỏ nhất  : 33

STN nhỏ nhất có 3 chữ số : 102

Soái Ca Cô Đơn
3 tháng 10 2017 lúc 15:41

cach lam nhu nao ban oi

I HATE THIS LIFE
3 tháng 10 2017 lúc 15:57

mk trả lời có chỗ sai mất tiu ròi

Nguyễn Ngọc My
Xem chi tiết
Bagel
3 tháng 1 2023 lúc 18:07

\(A=4+4^2+4^3+...+4^{23}+4^{24}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)

\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)

\(=1.20+4^3.20+....+4^{23}.20\)

\(=\left(1+4^3+...+4^{23}\right).20\)

\(\Rightarrow A⋮20\)

-------------------------------------------------------------------------

\(A=4+4^2+4^3+....+4^{23}+4^{24}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)

\(=1.84+4^4.84+....+4^{22}.84\)

\(=\left(1+4^4+...+4^{22}\right).84\)

\(\Rightarrow A⋮84⋮21\)

---------------------------------------------------------------------------

\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)

\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)

\(=1.5460+4^7.5460+...4^{19}.5460\)

\(=\left(1+4^7+...+4^{19}\right).5460\)

\(\Rightarrow A⋮5460⋮420\)

Trinh Ngoc Tri
Xem chi tiết
Loan Tran
Xem chi tiết
HT.Phong (9A5)
21 tháng 9 2023 lúc 10:24

c) \(\left(x+\dfrac{y}{x}\right)^3\)

\(=\left(\dfrac{x^2}{x}+\dfrac{y}{x}\right)^3\)

\(=\left(\dfrac{x^2+y}{x}\right)^3\)

\(=\dfrac{x^6+3x^4y+3x^2y^3+y^3}{x^3}\)

f) \(\left(x-\dfrac{1}{2}\right)^3\)

\(=x^3-3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3\)

\(=x^3-\dfrac{3}{2}x^2+\dfrac{3}{4}x-\dfrac{1}{8}\)

h) \(\left(x+\dfrac{y^2}{2}\right)^3\)

\(=\left(\dfrac{2x}{2}+\dfrac{y^2}{2}\right)^3\)

\(=\left(\dfrac{2x+y^2}{2}\right)^3\)

\(=\dfrac{8x^3+12x^2y^2+6xy^4+y^6}{8}\)

k) \(\left(x-\dfrac{1}{3}\right)^3\)

\(=x^3-3\cdot x^2\cdot\dfrac{1}{3}+3\cdot x\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)

\(=x^3-x^2+\dfrac{x}{3}-\dfrac{1}{27}\)

m) \(\left(x+\dfrac{y^2}{3}\right)^3\)

\(=\left(\dfrac{3x}{3}+\dfrac{y^2}{3}\right)^3\)

\(=\left(\dfrac{3x+y^2}{3}\right)^3\)

\(=\dfrac{27x^3+27x^2y^2+9xy^4+y^6}{27}\)

Q) \(2\left(x^2+\dfrac{1}{2}y\right)\left(2x^2-y\right)\)

\(=2\left(2x^4-x^2y+x^2y-\dfrac{1}{2}y^2\right)\)

\(=2\left(2x^4-\dfrac{1}{2}y^2\right)\)

\(=4x^4-y^2\)

Quỳnh Anh Ngô
Xem chi tiết
Liên Hoàng
Xem chi tiết
Nguyễn Minh Quang
4 tháng 8 2021 lúc 20:46

ta có \(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)

\(\Leftrightarrow x^2+4x+4-2\left(x^2+5x+6\right)+x^2+10x+25=7\)

\(\Leftrightarrow4x+10=0\Leftrightarrow x=-\frac{5}{2}\)

Khách vãng lai đã xóa
Nguyễn Văn Lâm ( ✎﹏IDΣΛ...
4 tháng 8 2021 lúc 20:53

Bạn áp dụng hằng đẳng thức số 1, nhân phá ngoặc là Ok nhé

\(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)

\(\Leftrightarrow x^2+4x+4-2\left(x^2+3x+2x+6\right)+x^2+10x+25-7=0\)

\(\Leftrightarrow2x^2+14x+22-2x^2-6x-4x-12=0\)

\(\Leftrightarrow4x+10=0\)

\(\Leftrightarrow4x=-10\)

\(\Leftrightarrow x=\frac{-5}{2}\)

Khách vãng lai đã xóa
Quỳnh Anh
4 tháng 8 2021 lúc 21:07

Trả lời:

( x + 2 )2 - 2 ( x + 2 ) ( x + 3 ) + ( x + 5 )2 = 7

<=> x2 + 4x + 4 - 2 ( x2 + 5x + 6 ) + x2 + 10x + 25 = 7

<=> x2 + 4x + 4 - 2x2 - 10x - 12 + x2 + 10x + 25 =  7

<=> 4x + 17 = 7

<=> 4x = - 10

<=> x = - 5/2

Vậy x = - 5/2 là nghiệm của pt.

Khách vãng lai đã xóa