\(7\left(x-2004\right)^2=23-y^2\)
\(\Rightarrow7\left(x-2004\right)^2+y^2=23\left(1\right)\)
Vì \(y^2\ge0\) nên \(\left(x-2004\right)^2\le\frac{23}{7}\) suy ra \(\left[\begin{matrix}\left(x-2004\right)^2=0\\\left(x-2004\right)^2=1\end{matrix}\right.\)
*)Xét \(\left(x-2004\right)^2=0\) thay vào \((1)\) ta có: \(y^2=23\) (loại)
*)Xét \((x-2004)^2=1\) thay vào \((1)\) ta có \(y^2=16\)
Từ đó ta tìm được \(\left[\begin{matrix}\left\{\begin{matrix}x=2005\\y=4\end{matrix}\right.\\\left\{\begin{matrix}x=2003\\y=4\end{matrix}\right.\end{matrix}\right.\)