\(\left(2x+3\right)^2=25\)
\(\Rightarrow2x+3=5\) hoặc \(2x+3=-5\)
+) \(2x+3=5\Rightarrow2x=2\Rightarrow x=1\)
+) \(2x+3=-5\Rightarrow2x=-8\Rightarrow x=-4\)
Vậy \(x\in\left\{1;-4\right\}\)
\(\left(2x+3\right)^2=25\)
\(\Rightarrow\left(2x+3\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow2x+3=\pm5\)
* Với \(2x+3=5\)
\(2x=5-3\)
\(2x=2\)
\(x=2\div2\)
\(x=1\)
* Với \(2x+3=-5\)
\(2x=-5-3\)
\(2x=-8\)
\(x=-8\div2\)
\(x=-4\)
Vậy \(x\in\left\{1;-4\right\}\)