Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huy bae :)

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 12 2017 lúc 15:34

lê phúc
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 18:09

\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)

Lấp La Lấp Lánh
25 tháng 10 2021 lúc 18:11

a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)

c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2017 lúc 11:13

a) TXĐ: R

y′ = 6x − 24 x 2  = 6x(1 − 4x)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)

y' < 0 trên các khoảng ( - ∞ ; 0 ); (14; + ∞ ), suy ra y nghịch biến trên các khoảng ( - ∞ ;0 ); (14; + ∞ )

b) TXĐ: R

y′ = 16 + 4x − 16 x 2  − 4 x 3  = −4(x + 4)( x 2  − 1)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số y đã cho đồng biến trên các khoảng ( - ∞ ; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1; + ∞ )

c) TXĐ: R

y′ = 3 x 2 − 12x + 9

y' = 0

y' > 0 trên các khoảng ( - ∞ ; 1), (3;  + ∞ ) nên y đồng biến trên các khoảng ( - ∞ ; 1), (3;  + ∞ )

y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)

d) TXĐ: R

y′ = 4 x 3  + 16 = 4x( x 2  + 4)

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' > 0 trên khoảng (0;  + ∞ ) ⇒ y đồng biến trên khoảng (0;  + ∞ )

y' < 0 trên khoảng ( - ∞ ; 0) ⇒ y nghịch biến trên khoảng ( - ∞ ; 0)

 
Quân
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
7 tháng 5 2023 lúc 10:16

loading...loading...

Trần Quang Anh
24 tháng 10 2023 lúc 6:28

Dễ

 Thế

Cũnhoir

Dc

Chịu

Chắc

Phải

Ngu 

Lamqs

Mới

Hỏi

Câu

Này

 

HAN
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 8 2019 lúc 3:39

a) x = -1.                      b) x = 4 hoặc x = 5.

c) x = ± 2 .                  d) x = 1 hoặc x = 2.

Loan Tran
Xem chi tiết
Đào Tùng Dương
5 tháng 10 2023 lúc 13:44

\(b,\left(x+2\right)^2-25\)

\(=\left(x+2\right)^2-5^2\)

\(=\left(x-3\right)\left(x+7\right)\)

\(c,36\left(x-y\right)^2\)

\(=36\left(x^2-2xy+y^2\right)\)

\(=36x^2-72xy+36y^2\)

\(d,x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)

\(=x^2+2.x.\dfrac{1}{4}+\dfrac{1}{4}^2\)

\(=\left(x+\dfrac{1}{4}\right)^2\)

\(e,2x^4y^3-3x^2y^4+5x^3y^4\)

\(=x^2y^3\left(2x^2-3y+5xy\right)\)

Các câu còn lại làm tương tự, chú ý sd HĐT

Đoàn Phan Hưng
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 9:32

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 7:30