Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 11 2018 lúc 5:32

Nguyễn Tuấn Tú
Xem chi tiết
Ẩn danh
Xem chi tiết
shitbo
19 tháng 3 2020 lúc 8:25

\(a-b+2019;b-c+2019;c-a+2019\text{ là 3 số nguyên liên tiếp}\)

\(\Rightarrow a-b;b-c;c-a\text{ là 3 số nguyên liên tiếp mà:}\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

\(\text{nên:}a-b=-1;b-c=0;c-a=1\Rightarrow b=c=a+1\)

Khách vãng lai đã xóa
Nguyễn Thế Vượng
Xem chi tiết
Hoàng Thiện Nhân
18 tháng 12 2018 lúc 21:50

lên hỏi cô giáo

Nguyễn Ngọc Ánh
18 tháng 12 2018 lúc 21:53

a=3

b=5

c=7

v
18 tháng 12 2018 lúc 21:53

người ta k bt mới phải lên đây hỏi cô cô lại nói tôi giảng rát họng mà chị/anh không hiểu à đầu người hay đầu đất vậy

Tấn Sang Nguyễn Văn Tấn...
Xem chi tiết
Kiều Vũ Linh
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2024 lúc 12:10

Bài này nó cứ sao sao ấy, về cơ bản là ko thể giải được nếu ko có máy tính cầm tay để test (có rất nhiều nghiệm).

Nếu b, c cùng lẻ hoặc cùng chẵn \(\Rightarrow b^4+c^2\) là số chẵn lớn hơn 2 \(\Rightarrow a\) ko phải SNT (ktm)

\(\Rightarrow\) b hoặc c phải có 1 số chẵn, 1 số lẻ

TH1: b chẵn \(\Rightarrow b=2\Rightarrow a=16+c^2\)

Do \(a\le2019\Rightarrow c< 44\)

Ta cũng có thể loại trừ các số nguyên tố có tận cùng bằng 7 hoặc 3 (vì khi đó \(c^2+16\) có tận cùng bằng 5 ko phải SNT)

Kiểm tra với các số nguyên tố nhỏ hơn 44 và tận cùng khác 3, 7 được các cặp thỏa mãn là \(\left(c;a\right)=\left(5;41\right);\left(11;137\right);\left(29;857\right);\left(31;977\right);\left(41;1697\right)\)

TH2: c chẵn \(\Rightarrow c=2\Rightarrow a=b^4+4=b^4+4b^2+4-4b^2=\left(b^2+2\right)^2-4b^2\)

\(\Rightarrow a=\left(b^2-2b+2\right)\left(b^2+2b+2\right)\)

\(\Rightarrow b^2-2b+2=1\) \(\Rightarrow b=1\) (ktm)

Phạm Tuấn Bách
Xem chi tiết
Hải Đậu Thị
17 tháng 12 2015 lúc 23:20

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

 

 

Vinh Nguyễn
Xem chi tiết
Thái Thị Trà My
Xem chi tiết
Nguyễn Phan Văn Trường
Xem chi tiết