Cho N= -{-(a+b)-[-(a-b)-(a+b)]}
cho a thuộc z, b thuộc n* chứng minh rằng
nếu a< b thì a/b< a+n/b+n
nếu a>b thì a/b>a+n/b+n
nếu a= bthì a/b=a+n=b+n
a) Ta có: a<b
=>a.n<b.n
=>a.n+a.b< b.n +a.b
=>a(b+n)<b(a+n)
=>a/b<a+n/b+n
Vậy nếu a<b thì a/b <a+n / b+n
b) Ta có : a>b
=>a.n>b.n
=>a.n+a.b>b.n+a.b
=>a(b+n)>b(a+n)
=>a/b>a+n/b+n
Vậy a>b thì a/b> a+n/b+n
c) Ta có : a=b
=>a.n=b.n
=>a.n+ a.b =b.n+a.b
=>a(b+n)=b(a+n)
=>a/b=a+n/b+n
Vậy a= b thì a/b =a+n/b+n
a, Cho a,b,n thuộc N . Chứng minh ( a.b )n = an . bn
b, Cho a,b,n thuộc N , b khác 0 và a chi hết cho b . Chứng minh ( a/b)n = an * bn
a) (ab)n = ab.ab.ab.....ab (n thừa số ab) = (a.a.a.....a).(b.b.b....b) (n thừa số a ; n thừa số b) = an.bn
Câu b bạn chứng minh tương tự.
BÀI 1 : CHO 2 THUỘC Z ; B THUỘC N*; n THUỘC N*. CHỨNG MINH
A) nếu a<b thì a/b<a+n/b+n
B) nếu a>b thì a/b>a+n/b+n
C)nếu a=b thì a/b=a+n/b+n
Cho a thuộc Z, b thuộc Z, n thuộc N. Chứng minh rằng:
a) Nếu a < b thì a/b < (a+n)/(b+n)
b) Nếu a > b thì a/b > (a+n)/(b+n)
a) Nếu a = b thì a/b = (a+n)/(b+n)
Bài 1:Cho A={x\(\in\)R|x2-x-6=0}, B={n\(\in\)N|2n-6≤0} và C={n\(\in\)N||n|≤4}
a)Tìm A\(\cap\)B, A\(\cap\)C, B\(\cap\)C, A\(\cap\)B\(\cap\)C
b)Tìm A\(\cup\)B, A\(\cup\)C, B\(\cup\)C, A\(\cup\)B\(\cup\)C
c)Tìm A\B, A\C, B\C
Bài 2:Cho tập E={a,b,c,d}, F={b,c,e,g}, G={c,d,e,f}. CMR:
E\(\cap\)(F\(\cup\)G)=(E\(\cap\)F)\(\cup\)(E\(\cap\)G).
Cho phân số a / b. CMR
+ Nếu a>b thì a / b > a+n / b+n
+Nếu a < b thì a / b < a +n / b + n
Cho a>b>0, n thuộc N*. So sanh:
A=(1+a+a^2 + ....+ a^(n-1))/(1+a+a^2+....+a^n)
B=(1+b+b^2+....+b^(n-1))/(1+b+b^2+......+b^n)
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
a) so sanh a/b (b>0) va a+n/b+n (n thuoc N*)
b)cho a,b,c thuoc z b>0
so sanh a/b vs a+2016/b+2016
c) cho a/b<c/d (b.d >0)
cm: a+c/b+d<c/d
Cho a,b,n thuộc N* thỏa mãn a/b <1.chứng minh a/b<a+n/b+n
Do \(\dfrac{a}{b}< 1\) nên a < b. Suy ra an < bn.
Ta có \(a\left(b+n\right)=ab+an< ab+bn=b\left(a+n\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)