Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thủy Tiên
Xem chi tiết
Nobita Kun
24 tháng 1 2016 lúc 17:39

Gọi UCLN(m; mn + 8) là d

=> m chia hết cho d => mn chia hết cho d

và mn + 8 chia hết cho d

Do đó 8 chia hết cho d => d thuộc {1; 2; 4; 8}

Mà m lẻ và m chia hết cho d => d lẻ

Do đó d = 1

=> UCLN(m; mn + 8) = 1

hay 2 số này nguyên tố cùng nhau

Vậy...

Hòa Trần
Xem chi tiết
Trần Tích Thường
Xem chi tiết
Dương Trần Nguyễn Thùy
Xem chi tiết
Tuấn Nguyễn
14 tháng 10 2018 lúc 15:48

Gọi 2 số đó là n + 1 và n + 3

Đặt ƯCLN(n+1,n+3) = d

Ta có: n + 1 chia hết cho d

n + 3 cũng chia hết cho d

=> (n+3) - (n+1) chia hết cho d

=> 2 chia hết cho d

\(d\inƯ\left(2\right)=\left\{1;2\right\}\)

Mà n+1 và n+3 là số lẻ nên không chia hết cho 2.

=> d = 1

Vậy 2 số lẻ liên tiếp là số nguyên tố cùng nhau.

Dương Trần Nguyễn Thùy
14 tháng 10 2018 lúc 16:04

Thank you very much !

Yuu Shinn
29 tháng 10 2018 lúc 16:53

Gọi 2 số đó là n + 1 và n + 3

Đặt ƯCLN(n+1,n+3) = d

Ta có: n + 1 chia hết cho d

n + 3 cũng chia hết cho d

=> (n+3) - (n+1) chia hết cho d

=> 2 chia hết cho d

$d\inƯ\left(2\right)=\left\{1;2\right\}$d∈Ư(2)={1;2}

Mà n+1 và n+3 là số lẻ nên không chia hết cho 2.

=> d = 1

Vậy 2 số lẻ liên tiếp là số nguyên tố cùng nhau.

kiều thanh thủy
Xem chi tiết
Đỗ Lê Tú Linh
10 tháng 11 2016 lúc 21:23

a)Gọi ƯCLN(3n+5;2n+3)=d

=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d

=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d

=>6n+10-(6n+9) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(3n+5;2n+3)=1

Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau

b)Gọi ƯCLN(5n+2;7n+3)=a

=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a

=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a

=> 35n+15-(35n+14) chia hết cho a

=>1 chia hết cho a hay a=1

Do đó, ƯCLN(5n+2;7n+3)=1

Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau

Sakuraba Laura
2 tháng 12 2017 lúc 5:14

a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)

\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.

b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)

\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.

Cô nàng Song Ngư
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 21:28

a)Gọi UCLN(3n+5;2n+3)=d

Ta có:

[2(3n+5)]-[3(2n+3)] chia hết d

=>[6n+10]-[6n+9] chia hết d

=>1 chia hết d

=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau

b)Gọi UCLN(5n+2;7n+3)=d

Ta có:

[5(7n+3)]-[7(5n+2)] chia hết d

=>[35n+15]-[35n+14] chia hết d

=>1 chia hết d

=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau

Nguyễn Hoàng Thiên Hương
Xem chi tiết
Lê Chí Cường
9 tháng 9 2015 lúc 21:36

Gỉa sử n=3=>3n+1=3.3+1=9+1=10

                      4n+2=4.3+2=12+2=14

mà (10,14)=2

=>Vô lí

Bạn xem lại đề nha.

Le Nhat Phuong
Xem chi tiết
#❤️_Tiểu-La_❤️#
16 tháng 8 2017 lúc 13:46

Gọi d = ƯCLN ( 5n+6 ; n+1 )

=> \(5n+6⋮d;n+1⋮d\)

=> \(5n+6⋮d;5.\left(n+1\right)⋮d\)

=> \(5n+6⋮d;5n+5⋮d\)

=> \(\left(5n+6\right)-\left(5n+5\right)⋮d\)

=> \(5n+6-5n-5⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> ƯCLN ( 5n+6 ; n+1 )  = 1

=> 5n+6 và n+1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n ( đpcm )

Vậy bài toán được chứng minh !

              Cbht ❤️

nguyễn thị hiệp
16 tháng 8 2017 lúc 13:50

Đặt ƯCLN(5n+6,n+1)=d

Ta có: \(n+1⋮d\Rightarrow5\left(n+1\right)⋮d\)\(\Rightarrow5n+5⋮d\)

                                                       mà: \(5n+6⋮d\)

\(\Rightarrow\left(5n+6\right)-\left(5n+5\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\)Ư(1)

Mà d lớn nhất=> d=1 =>ƯCLN(n+1,5n+6)=1 

=>. n+1 và 5n+6 là 2 số nguyên tố cùng nhau\(\forall n\in Z\)

Le Nhat Phuong
16 tháng 8 2017 lúc 13:52

Gợi ý:

Gọi ƯCNL \('5n+6,n+1'=d\Rightarrow'5n+6'⋮d;'n+1'⋮d\)

Ta có, \(5n+6=5'n+1'+1\) 

Vì \(5'n+1'⋮d\) nên suy ra \(1⋮d\Rightarrow d=1\)

Vậy 5n + 6 và n + 1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n 

Linh Tran
Xem chi tiết