Chứng minh rằng a(x-3)+6=a3-2(a2-x) luôn có nghiệm dương với mọi x khác 2.
cho 6 số thực a1<a2<a3<a4<a5<a6. Chứng minh rằng phương trình (x-a1)(x-a3)(x-a5)+(x-a2)(x-a4)(x-a6)=0 có đúng 3 nghiệm phân biệt.
Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)
\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)
\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)
\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)
\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)
\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)
mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm
=> dpcm
Chú ý rằng nếu c > 0 thì a + b 2 + c và a + b 2 + c đều dương với mọi a, b. Áp dụng điều này chứng minh rằng:
Với mọi giá trị của x khác ± 1, biểu thức:
x + 2 x - 1 x 3 2 x + 2 + 1 - 8 x + 7 2 x 2 - 2 luôn luôn có giá trị dương.
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1
Chứng minh rằng: phương trình a(x-a^2+1)=a^2+2-2x luôn có nhiệm nguyên dương với mọi tham số a khác -2
Cho phương trình x2 - 2 ( k - 1 ) x + k - 3 = 0
1. CHứng minh rằng phương trình luôn có nghiệm với mọi k
2. tìm k để phương trình có 2 nghiệm đều dương
Chứng minh rằng biểu thức:
A = x(x – 6) + 10 luôn dương với mọi x
B = x2 – 2x + 9y2 – 6y + 3 luôn dương với mọi x, y
`A=x(x-6)+10=x^2-6x+10`
`=x^2 -2.x .3 + 3^2 + 1`
`=(x-3)^2+1 >0 forall x`
`B=x^2-2x+9y^2-6y+3`
`=(x^2-2x+1)+(9y^2-6y+1)+1`
`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.
chứng minh rằng biểu thức
a)x^2+2x+3 luôn dương với mọi x
b)-x^2+4x-5 luôn âm với mọi x
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
a.x2+ 2x+ 3
=x2+ 2.x.1+ 12- 12+ 3
= (x+1)2 -1+3
= (x+1)2+ 2
Ta có: (x+1)2 ≥0
(x+1)2+ 3≥ 3>0
⇒x2+ 2x+ 3>0 mọi x
Vậy x2+ 2x+3>0 mọi x
b. -x2+ 4x- 5
= - (x2- 4x +5)
= - (x2- 2.x.2+ 22- 22+ 5)
= - ((x- 2)2- 4+ 5)
= - ((x- 2)2+1)
= -(x- 2)2 -1
Ta có: (x-2)2 ≥0
- (x-2)2 ≤0
- (x-2)2 +1≤ 1
⇒ -x2+ 4x- 5 <0 mọi x
Vậy -x2+ 4x- 5 <0 mọi x
chứng minh rằng các biểu thức sau luôn luôn dương với mọi x
A = x (x - 6) + 10
B = x2 - 2x + 9y2 - 6y + 3
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
thanks bạn nhìu
A = x( x - 6 ) + 10
A = x2 - 6x + 10
A = ( x2 - 6x + 9 ) + 1
A = ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 - 2x + 9y2 - 6y + 3
B = ( x2 - 2x + 1 ) + ( 9y2 - 6y + 1 ) + 1
B = ( x - 1 )2 + ( 3y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
Chứng minh rằng phương trình \(x^2\)– 2(m + 4)x + 2m + 6 = 0 luôn có nghiệm với mọi giá trị của m.
Xét phương trình \(x^2-2\left(m+4\right)x+2m+6=0\)
\(\Delta'=\left(m+4\right)^2-\left(2m+6\right)=m^2+2m+16-2m-6=m^2+10>0\)
Vậy phương trình luôn có nghiệm với mọi \(m\)
mọi ngươi giup minh nha
cho: a1,a2,a3,.....................An là các số tự nhiên dương khác nhau và khác 1
chứng minh rằng đẳng thứ sau k xảy ra:
1/a1^2 + 1/a2^2 + 1/a3^3+..........+1/an^2
giúp mminh đi