CHo \(3x+y=1\)
a) Tìm min \(M=3x^2+y^2\)
b) Tìm max \(K=xy\)
Cho 3x+y=1
a)Tìm min M=3x2+y2
b)Tìm max N=xy
3x+y=1
y^2=1-6x+9x^2
a) M=12(x^2-2.1/4x+1/16)+1-12/16
GTNN=1-3/4=1/4 khi x=1/4=>y=1/4
b) N=xy=x(1-3x)=-3x^2+x=-3(x^2-2.1/6x+1/36)+3/36
GTLN =1/12 khi x=1/6 ;y=1/2
Tìm Max hoặc Min
a) A=(3x-1)-4|3x-1|+5
b) B= x^2+y^2-xy+x+y
Tìm min hoặc max:
\(^{M=x^2+y^2+xy-3x-3y+2018}\)
\(M=x^2+y^2+xy-3x-3y+2018\)
\(=x^2+2x\frac{\left(y-3\right)}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y+2018-\left(\frac{y-3}{2}\right)^2\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3y^2-6y+8063}{4}\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)}{4}+2015\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2015\ge2015\)
\("="\Leftrightarrow x=y=1\)
Cho \(3x+y=1\)
a) Tìm min \(M=3x^2+y^2\)
b) Tìm max \(N=xy\)
Ta có: \(y=1-3x\)
a/ \(M=3x^2+y^2=3x^2+\left(1-3x\right)^2\)
\(\Leftrightarrow12x^2-6x+1=\left(12x^2-\frac{2.2.3x}{2}+\frac{3}{4}\right)+\frac{1}{4}\)
\(=\left(2\sqrt{3}x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Vậy GTNN là 0,25 đạt được khi x = 0,25
b/ \(N=xy=x\left(1-3x\right)=-3x^2+x\)
\(=\left(-3x^2+\frac{2.\sqrt{3}x}{2\sqrt{3}}-\frac{1}{12}\right)+\frac{1}{12}\)
\(=\frac{1}{12}-\left(\sqrt{3}x-\frac{1}{2\sqrt{3}}\right)^2\le\frac{1}{12}\)
Vậy max là \(\frac{1}{12}\) đạt được khi \(x=\frac{1}{6}\)
1) Cho x,y > 0 thoả mãn : 1/x + 1/y =1/2 Tìm min : A = \(\sqrt{x}+\sqrt{y}\)
2) Tìm min max B = \(\sqrt{3x-5}+\sqrt{7-3x}\)
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
1,Cho x,y>0 và xy=2018. Tìm Pmin= 2/x + 1009/y - 2018/(2018x+4y)
2,Cho x,y>0 và x+y=1. Tìm Min B=1/x3+y3 +1/xy
3,Nếu x,y thuộc N* và 2x+3y=53. Tìm max của căn(xy+4)
4,Tìm min P=x^2 +xy +y^2 -3x -3y +2019
5,Cho 0<x<2. Tìm min A= 9x/2-x +2/x
6,Tìm min D= x/y+z + y+z/x + y/x+z + z+x/y + z/x+y + x+y/z
Làm ơn giải giùm mình với, ngay mai kiểm tra rồi.
Cảm ơn nhiều :)))))
Bài 1: Cho 2 số x,y lớn hơn hoặc bằng 0 ; xy=100. Tìm Min 2x+3y.
Bài 2: Cho 2 số x,y lớn hơn hoặc bằng 0 ; 3x+4y=24. Tìm Max xy.
GIÚP MIK VỚI.... ĐAG CẦN GẤP
Cho x, y thỏa mãn \(3x^2+xy+2y^2\le2\). Tìm min, max \(P=x^2+3xy-y^2\)
1: Tìm max: S= -(3x-2)^2-(3x-1)^2
2: S=-x^2-3y^2-2xy+10x+18y+8
2: tìm min max: P=6x-8/x^2+9
3: tìm max : S=-x^2+4x+1/2x^2+6
4 tìm min A= x^6+512/x^2+8
5 tìm min A= 2x^16x+41/x^2-8x+22
6 tìm min A= x^2-4x+1/x^2
7 tìm max A= x/(x+10)^2
8 cho x+y=1, x,y>0 tìm min A=1/x+1/y
Mọi người ơi giải giuos mình với chiều nay mình hk r mà chưa bt cách giải làm sao mn giúp mình với ai đúng mình sẽ tích cho nhé ngay và luôn luôn. Cảm ơn mn nhiều
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)