Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

CHo \(3x+y=1\)

a) Tìm min \(M=3x^2+y^2\)

b) Tìm max \(K=xy\)

Akai Haruma
8 tháng 9 2017 lúc 10:03

Lời giải:

a)

Áp dụng BĐT Cauchy-Schwarz:

\(4M=(3x^2+y^2)(3+1)\geq (3x+y)^2\)

\(\Leftrightarrow 4M\geq 1\Leftrightarrow M\geq \frac{1}{4}\)

Vậy \(M_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)

b) Với mọi \(x,y\in\mathbb{R}\Rightarrow (3x-y)^2\geq 0\)

\(\Leftrightarrow 9x^2+y^2-6xy\geq 0\Leftrightarrow (3x+y)^2-12xy\geq 0\)

\(\Leftrightarrow xy\leq \frac{(3x+y)^2}{12}=\frac{1}{12}\)

Vậy \(K_{\max}=\frac{1}{12}\Leftrightarrow x=\frac{1}{6};y=\frac{1}{2}\)


Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Mung Tran Thi
Xem chi tiết
Đinh Trần Anh Thư
Xem chi tiết
Loan
Xem chi tiết
Quynh Chipi
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
bella nguyen
Xem chi tiết