Tìm đa thức P(x) thỏa mãn P(2) = 2 và P(x^2) = x^2(x^2 + 1).P(x). Help me pls!!!!
Help me pls:"))
Tìm đa thức B(x) thỏa mãn:A(x)=B(x).Q(x)-x+1
Biết A(x)=x^3-2x^2+x Q(x)=x-1
`@` `\text {Ans}`
`\downarrow`
Ta có:
`A(x) = B(x)* Q(x) - x + 1`
`A(x) = x^3-2x^2+x`; `Q(x) = x - 1`
`<=> B(x) * (x - 1) - x + 1 = x^3 - 2x^2 + x`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + x + x - 1`
`<=> B(x) * (x - 1) = x^3 - 2x^2 + 2x - 1`
`<=> B(x) = (x^3 - 2x^2 + 2x - 1) \div (x - 1)`
`<=> B(x) = x^2 - x + 1`
Vậy, `B(x) = x^2 - x + 1.`
A(x)=B(x)*Q(x)-x+1
=>x^3-2x^2+x=B(x)(x-1)-x+1
=>B(x)*(x-1)=x^3-2x^2+x+x-1=x^3-2x^2+2x-1
=>\(B\left(x\right)=\dfrac{x^3-2x^2+2x-1}{x-1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)-2x\left(x-1\right)}{x-1}\)
=>B(x)=x^2+x+1-2x
=>B(x)=x^2-x+1
Ta có:
\(A\left(x\right)=B\left(x\right)\cdot Q\left(x\right)-x+1\)
\(\Leftrightarrow B\left(x\right)\cdot Q\left(x\right)=A\left(x\right)+x-1\)
\(\Leftrightarrow B\left(x\right)=\dfrac{A\left(x\right)+x-1}{Q\left(x\right)}\)
Mà: \(A\left(x\right)=x^3-2x^2+x\) và \(Q=x-1\) thay vào ta có:
\(\Leftrightarrow B\left(x\right)=\dfrac{x^3-2x^2+x+x-1}{x-1}\)
\(\Leftrightarrow B\left(x\right)=\dfrac{x^3-2x^2+2x-1}{x-1}\)
\(\Leftrightarrow B\left(x\right)=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{x-1}\)
\(\Leftrightarrow B\left(x\right)=x^2-x+1\)
Bài 1: Cho 2 đa thức
M(x)=2,5x^2 -0,5x-x^3-1
1/2 N(x)=-x^3+2,5x^2-6+2x
a,Tìm A(x)=M(x) -N(x) .Rồi tìm nghiệm A(x)
b,Tìm đa thức B(x) biết B(x) =M(x)+N(x),tìm bậc của đa thức B(x)
PLS HELP ME PLS ;-;
a) Ta có: A(x)=M(x)-N(x)
\(=\dfrac{5}{2}x^2-\dfrac{1}{2}x-x^3-1-\left(-2x^3+5x^2-12+4x\right)\)
\(=\dfrac{5}{2}x^2-\dfrac{1}{2}x-x^3-1+2x^3-5x^2+12-4x\)
\(=x^3-\dfrac{5}{2}x^2-\dfrac{9}{2}x+11\)
Bài 1: Cho 2 đa thức
M(x)=2,5x^2 -0,5x-x^3-1;1/2 N(x)=-x^3+2,5x^2-6+2x
a,Tìm A(x)=M(x) -N(x) .Rồi tìm nghiệm A(x)
b,Tìm đa thức B(x) biết B(x) =M(x)+N(x),tìm bậc của đa thức B(x)
PLS HELP ME PLS ;-;
Cái chỗ 1;1/2 là gì vậy bạn?
Tìm a và b để đa thức A = x2 + ax + b chia cho x + 1 thì dư 6 và khi chia cho x - 2 thì dư 3
Help me, pls !!!
https://olm.vn/hoi-dap/detail/92036248714.html
Xem ở link này ( mình gửi cho)
Học tốt!!!!!!!
Ta có:
\(x^2+ax+b=\left(x+1\right)\cdot P\left(x\right)+6\)
\(x^2+ax+b=\left(x-2\right)\cdot Q\left(x\right)+3\)
Với \(x=-1\Rightarrow x^2+ax+b=6\Leftrightarrow1-a+b=6\Rightarrow-a+b=6\)
Với \(x=2\Rightarrow x^2+ax+b=6\Leftrightarrow4+2a+b=6\Leftrightarrow2a+b=2\)
Từ \(\left(1\right);\left(2\right)\Rightarrow-3a=4\Rightarrow a=-\frac{4}{3}\Rightarrow b=\frac{14}{3}\)
Cho f(x) thỏa mãn 3f(x) – f(1 – x) = x2 + 1 với mọi x. Tính f(1), f(0), f(-1).
Help me pls
Với x=0
\(\Rightarrow3.f\left(0\right)-f\left(1\right)=0+1=1\)
\(f\left(0\right)-f\left(1\right)=\frac{1}{3}\)(1)
Với x=1
\(\Rightarrow3.f\left(1\right)-f\left(0\right)=1+1=2\)
\(f\left(1\right)-f\left(0\right)=\frac{2}{3}\)(2)
Với x=-1
\(3.f\left(-1\right)-f\left(2\right)=1+1=2\)
\(\Rightarrow f\left(-1\right)-f\left(2\right)=\frac{2}{3}\)(3)
Kết hợp (1);(2);(3) tính nhé
Cho hai đa thức : P(x)=-5x3-1/3+8x4+x2
Q(x)=x2-5x-2x3+x4-2/3
Hãy tính P(x)+Q(x) và P(x)-Q(x)
pls help me
Tìm giá trị x thỏa mãn:
a, \(\dfrac{x+1}{2}\) và \(\dfrac{2}{x+1}\)
b, \(\dfrac{\left(x-2\right)^2}{7}\) = \(\dfrac{49}{x-2}\)
Help me pls! (vì đang cần gấp :V)
a: Ta có: \(\dfrac{x+1}{2}=\dfrac{2}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b: Ta có: \(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{\left(x-2\right)}\)
\(\Leftrightarrow x-2=7\)
hay x=9
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Help me please
1. Tìm tất cả các đa thức \(P\left(x\right)\) khác đa thức 0 thỏa mãn \(P\left(2014\right)=2046\) và \(P\left(x\right)=\sqrt{P\left(x^2+1\right)-33}+32,\forall x\ge0\)
2. Tìm tất cả các đa thức \(P\left(x\right)\inℤ\left[x\right]\) bậc \(n\) thỏa mãn điều kiện sau: \(\left[P\left(2x\right)\right]^2=16P\left(x^2\right),\forall x\inℝ\)
1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.