Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Linh
Xem chi tiết
nguyễn thái bình
20 tháng 11 2019 lúc 14:09

Các cụ cho con bỏ câu này

Khách vãng lai đã xóa
lili
20 tháng 11 2019 lúc 14:19

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

Khách vãng lai đã xóa
Nguyễn Phúc Lâm
12 tháng 9 2021 lúc 15:13

khó.......................................qáu

Khách vãng lai đã xóa
Thị Mỹ Hạnh Võ
Xem chi tiết
Hoàng Lê Bảo Ngọc
31 tháng 10 2016 lúc 12:32

Chứng minh bằng quy nạp :

Với n = 2, đặt 2x = b+c-a > 0 , 2y = a-b+c > 0 , 2z = a+b-c > 0

Suy ra a = y+z , b = z+x , c = x+y

BĐT cần chứng minh trở thành \(xy^3+yz^3+zx^3-xyz\left(x+y+z\right)\ge0\)

\(\Leftrightarrow xyz\left[\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x+y+z\right)\right]\ge0\)(*)

Áp dụng BĐT Cauchy cho các số dương ta có :

\(y+\frac{x^2}{y}\ge2x\) ; \(x+\frac{z^2}{x}\ge2z\) ; \(z+\frac{y^2}{z}\ge2y\)

Từ đó suy ra \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge x+y+z\)

\(\Leftrightarrow\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x+y+z\right)\ge0\)

Từ đó BĐT (*) được chứng minh. Từ đó suy ra BĐT ban đầu được chứng minh.

Giả sử BĐT đúng với n , ta sẽ chứng minh BĐT cũng đúng với n+1. Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Theo giả thiết quy nạp ta có \(b^nc\left(b-c\right)\ge-a^nb\left(a-b\right)-c^na\left(c-a\right)\)

\(\Rightarrow b^{n+1}c\left(b-c\right)\ge-a^nb^2\left(a-b\right)-c^nab\left(c-a\right)\)

Do đó \(a^{n+1}b\left(a-b\right)+b^{n+1}c\left(b-c\right)+c^{n+1}a\left(c-a\right)\)

\(\ge a^{n+1}b\left(a-b\right)-a^nb^2\left(a-b\right)-c^nab\left(c-a\right)+c^{n+1}a\left(c-a\right)\)

\(=a^nb\left(a-b\right)^2+c^na\left(c-a\right)\left(c-b\right)\ge0\)

Vậy BĐT đúng với n + 1

Theo nguyên lí quy nạp BĐT đã cho đúng với mọi n > 1

Đẳng thức xảy ra khi a = b = c <=> Tam giác đã cho là tam giác đều.

 

 

Anh Triêt
8 tháng 10 2016 lúc 21:24

Lớp mấy vậy bạn

Nguyễn Thị Thùy
Xem chi tiết
Mai Ngọc
4 tháng 1 2016 lúc 19:47

\(7^{4n}-1=\left(7^4\right)^n-1=\left(2401\right)^n-1=\left(....1\right)-1=...0\Rightarrow7^{4n}-1\)chia hết cho n(vì có tận cùng là 0)

 

EnderCraft Gaming
Xem chi tiết
đỗ quốc khánh
5 tháng 10 2019 lúc 11:29

hello minh anh ak 

đỗ quốc khánh
5 tháng 10 2019 lúc 11:29

bitch

Nguyễn Phương Anh
Xem chi tiết
nguyễn thị trang
Xem chi tiết
Vương Ngọc Uyển
Xem chi tiết
cô nàng lém lỉnh
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Vương Ngọc Uyển
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((

Nguyễn Thị Ngọc Ánh
Xem chi tiết
Trương Phúc Uyên Phương
9 tháng 10 2015 lúc 21:22

a hình như lộn đề 

b. a = - ( b + c)

\(\Leftrightarrow a^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3=-\left(b^3+3.ab^2+3.a^2b+b^3\right)\)

\(\Leftrightarrow a^3=-b^3-3cb^2-3c^2b-b^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=-3bc.-a=3abc\)

chỗ nào ko hiểu gửi thư mik , gửi lun cái đề câu a nhá ^^ 

 

Blue Frost
Xem chi tiết
Pain zEd kAmi
24 tháng 6 2018 lúc 16:59

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la số t­­­­­­­­­­ự nhiên thì n.2+n+1 ko chia hết cho 9