Phân tích đa tức thành nhân tử
2x3+x2-4x-12
Giúp mình với
bài 1:phân tích đa thức thành nhân tử
a)7x^3y-14x^2y+7xy^3
b)3x^2-3xy-5x+5y
c)x^2+7x+12
giúp mình với
\(a,=7xy\left(x^2-2xy+y^2\right)=7xy\left(x-y\right)^2\\ b,=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\\ c,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\)
phân tích đa thức thành nhân tử
x2 - 6x + 9
9y2 + 12xy + 4x2
1/25 x2 - 64y2
x3 - 8y3
(4x - 3)2 - (x+1)2
Giúp mình với mình đang cần gấp
1. (x-3)2
2. (3y+2x)2
3. (1/5x-8y)(1/5x+8y)
4. (x-2y)(x2+2xy+4y2)
5. (4x-3-x-1)(4x-3+x+1)
(3x-4)(5x-2)
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Phân tích đa thức sau thành nhân tử: x2 – 4x + 3
Cách 1: x2 – 4x + 3
= x2 – x – 3x + 3
(Tách –4x = –x – 3x)
= x(x – 1) – 3(x – 1)
(Có x – 1 là nhân tử chung)
= (x – 1)(x – 3)
Cách 2: x2 – 4x + 3
= x2 – 2.x.2 + 22 + 3 – 22
(Thêm bớt 22 để có HĐT (2))
= (x – 2)2 – 1
(Xuất hiện HĐT (3))
= (x – 2 – 1)(x – 2 + 1)
= (x – 3)(x – 1)
phân tích đa thức thành nhân tử
a,3x2 - 11x + 8
b,x2 - 6x + 5
c,x2 - 4x - 12
a: =3x^2-3x-8x+8=(x-1)(3x-8)
b: =x^2-x-5x+5=(x-1)(x-5)
c: =x^2-6x+2x-12=(x-6)(x+2)
Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:
x2 + 4x – 2xy – 4y + y2 = (x2 - 2xy + y2) + (4x – 4y)
= (x - y)2 + 4(x – y)
= (x – y)(x – y + 4).
Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
Phân Tích đa thức sau thành nhân tử
a)X2.(X2+4)-X2-4
b)(X2+X)2+4x2+4x-12
c)(x+2).(x+3).(x+4).(x+5)-24
Giúp e với ạ
a) \(x^2\left(x^2+4\right)-x^2-4=x^2\left(x^2+4\right)-\left(x^2+4\right)=\left(x^2+4\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
b) \(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25=\left(x^2+7x+11\right)^2-5^2=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
a. \(x^2\left(x^2+4\right)-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2+4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+4\right)\)
b. \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
c. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (*)
Đặt \(t=x^2+7x+10\), ta được
(*) \(=t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)\)
hay \(\left(x^2+7x+6\right)\left(x^2+7x+18\right)\)
a: Ta có: \(x^2\left(x^2+4\right)-x^2-4\)
\(=\left(x^2+4\right)\left(x^2-1\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
b: Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-2\left(x^2+x\right)-12\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
Phân tích đa thức x2 + 4x + 3 thành nhân tử ta được
\(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+3\right)\left(x+1\right)\)
Phân tích đa thức sau thành nhân tử: x2 + 4x –y2 + 4
Nhận thấy x2 + 4x + 4 là hằng đẳng thức nên ta nhóm với nhau.
x2 + 4x – y2 + 4
= (x2 + 4x + 4) – y2
= (x + 2)2 – y2 (Xuất hiện hằng đẳng thức (3))
= (x + 2 – y)(x + 2 + y)