1/ Chứng minh 3n+2 và 3n+3 (n\(\in\)N) là 2 số nguyên tố cùng nhau
Chứng minh rằng n^3+2n và n^4+3n^2+n là 2 số nguyên tố cùng nhau.
Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.
Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha
hãy chứng tỏ 2 số 3n+2 và 4n+3 là 2 số nguyên tố cng nhau với mọi STN n
luy y : cho chia cho
d cau sua la chia het nh
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n ∈ N) là hai số nguyên tố cùng nhau.
Gọi d là ước chung của n + 1 và 3n + 4.
Ta có n + 1 ⋮ d nên 3( n+1) ⋮ d hay 3n + 3 ⋮ d
Lại có: 3n + 4 ⋮ d.
Suy ra (3n + 4) - (3n + 3) ⋮ d hay 1 ⋮ d
Do đó, d = 1.
Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau:
a, 3n+5 và 2n+3
b, 5n+2 và 7n+3
a)Gọi UCLN(3n+5;2n+3)=d
Ta có:
[2(3n+5)]-[3(2n+3)] chia hết d
=>[6n+10]-[6n+9] chia hết d
=>1 chia hết d
=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau
b)Gọi UCLN(5n+2;7n+3)=d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau
Chứng tỏ rằng với mọi số tự nhiên n khác 0 thì 3n + 1 và 4n + 2 là các số nguyên tố cùng nhau.
Gỉa sử n=3=>3n+1=3.3+1=9+1=10
4n+2=4.3+2=12+2=14
mà (10,14)=2
=>Vô lí
Bạn xem lại đề nha.
Chứng minh rằng : Với n ϵ N, thì các số sau là hai số nguyên tố cùng nhau
a) n+1 và 2n+3
b) n+1 và 3n+4
c) 2n+3 và 4n+8
d) n+3 và 2n+5
LÀM 1 CÂU BẤT KÌ CŨNG ĐƯỢC Ạ
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
Chứng minh các số sau đây là các số nguyên tố cùng nhau
a) Hai số lẻ liên tiếp
b) n+1 và 3n +4 ( n \(\in\) N )
c) 2n+5 và 3n + 7 ( n \(\in\)N )
Gọi 2 số lẻ liên tiếp là a;a+2
Gọi ƯCLN (a;a+2) =d
=> a chia hết cho d ; a+2 chia hết cho d
=> a+2 - a chia hết cho d
=> 2 chia hết cho d => d= 1;2
Vì a là số lẻ => a không chia hết cho 2
=> d= 1
=> ƯCLN (a;a+2) = 1
=> Hai số lẻ liên tiếp nguyên tố cùng nhau
b)
Gọi ƯCLN(n+1;3n+4) = d
=> n+1 chia hết cho d; 3n+ 4 chia hết cho d
=> 3.(n+1) chia hết cho d; 3n+4 chia hết cho d
=> 3n+3 chia hết cho d ; 3n+4 chia hết cho d
=> (3n+4) - ( 3n+3) chia hết cho d
=> 1 chia hết cho d => d= 1
=> ƯCLN(n+1;3n+4) =1
=> n+1 và 3n+4 nguyên tố cùng nhau
c) Trong câu hỏi tương tự có nhé bạn !
n>2 và n ko chia hết cho 3.chứng minh rằng n2-1 và n2+1 ko thể đồng thời là số nguyên tố
cho p và p+4 là các số nguyên tố(p>3).chứng minh p+8 là hợp số
cho p và p+8 là số nguyên tố (p>3).hỏi p+100 là số nguyên tố hay hợp số
Chứng tỏ rằng 3n + 5 và 2n + 3 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Ai nhanh mk tick luôn
gọi UCLN(2n+3, 3n+5) là d
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)