GTNN của biểu thức G = \(\left|x-3\right|+\left|x+\frac{3}{2}\right|\) là .......
tìm GTNN của biểu thức:
P = \(\left[{}\left(\frac{-1}{3}\right)^2}x^3+\left(2x^2\right)^2+\frac{1}{2}]-\left[{}x\left(\frac{1}{3}x\right)^2+\begin{matrix}3\\2^3\end{matrix}\right.+x^4]+\left(y-2013\right)^2\)
Tìm gtnn của biểu thức \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Trong đó x, y là số thực lớn hơn 1
Sử dụng BĐT Cauchy Schwarz ta dễ có:
\(P=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
\(\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Ta cần chứng minh: \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\)
\(\Leftrightarrow\left(x+y\right)^2-8\left(x+y\right)+16\ge0\)
\(\Leftrightarrow\left(x+y-4\right)^2\ge0\)( ĐPCM )
Có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Theo BĐT Cô - si ta có :
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Do đó ; \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4.\left(x+y-2\right)\ge4\left(x+y\right)\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Hay : \(P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy \(P_{min}=8\) khi \(x=y=2\)
Tìm GTNN của biểu thức : \(x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)
Mình ko biêt nha
chúc các bạn học giỏi
Nhớ k cho mình nha
Tìm GTNN của biểu thức: A = \(x\left(x+2\right)+2\left(x-\frac{2}{3}\right)\)
\(A=x\left(x+2\right)+2\left(x-\frac{2}{3}\right)\)
\(A=x\left(x+2\right)+2\left(x+2\right)-2.2-2.\frac{2}{3}\)
\(A=\left(x+2\right)^2-4-\frac{4}{3}\)
\(A=\left(x+2\right)^2-\left(4+\frac{4}{3}\right)=\left(x+2\right)^2-\frac{16}{3}\ge-\frac{16}{3}\forall x\)
Dấu "=" xảy ra khi (x + 2)2 = 0
=> x + 2 = 0
=> x = -2
Vậy GTNN của A là \(-\frac{16}{3}\) khi x = -2
Cho x,y>1.Tìm GTNN của biểu thức:
\(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Biến đổi ta được: \(P=\frac{x^2}{x-1}+\frac{y^2}{y-1}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{x^2}{x-1}+\frac{y^2}{y-1}\ge\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\)
Lại có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2\)
Tương tự: \(\frac{y}{\sqrt{y-1}}\ge2\Rightarrow\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\ge8\)
Vậy Min P =8 khi và chỉ khi x=y=2
\(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(kết hợp áp dụng bất đẳng thức Bunyakovsky dạng phân thức)
Đặt a + b = s
Ta có: \(\left(s-4\right)^2\ge0\Leftrightarrow s^2-8s+16\ge0\Leftrightarrow s^2\ge8\left(s-2\right)\Leftrightarrow\frac{s^2}{s-2}\ge8\)
Vậy GTNN của P là 8 khi x = y = 2
Cho biểu thức: P = \(\left(\frac{x}{x+3}-\frac{2}{x-3}+\frac{x^2-1}{9-x^2}\right):\left(2-\frac{x+5}{x+3}\right)\)
Tìm GTNN của biểu thức A = -2.x2.P
\(\Leftrightarrow P=\left(\frac{x\left(3-x\right)}{9-x^2}+\frac{2\left(x+3\right)}{9-x^2}+\frac{x^2-1}{9-x^2}\right):\left(\frac{2\left(x+3\right)-\left(x+5\right)}{x+3}\right)\)
\(\Leftrightarrow P=\frac{3x-x^2+2x+6+x^2-1}{9-x^2}:\frac{x+1}{x+3}\)
\(\Leftrightarrow P=\frac{5\left(x+1\right)}{\left(3-x\right)\left(x+3\right)}.\frac{x+3}{x+1}\)
\(\Leftrightarrow P=\frac{5}{3-x}\) Ta có A=\(\frac{10x^2}{x-3}\)
Tìm GTNN của biểu thức \(A=x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)
Tìm GTNN của biểu thức: \(A=X\left(X+2\right)+2\left(X-\frac{3}{2}\right)\)
\(A=x\left(x+2\right)+2\left(x-\frac{3}{2}\right)\)
\(=x^2+2x+2x-3\)
\(=x^2+4x-3\)
\(=x^2+4x+4-7\)
\(=\left(x+2\right)^2-7\ge-7\)
Dấu ' = ' \(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(A=x^2+2x+2x-3=x^2+4x-3.\)
\(A=x^2+4x+4-4-3=\left(x+2\right)^2-7\ge-7\)
cảm ơn bạn Vũ Thu Huyền đã đăng câu hỏi
Tìm GTNN của biểu thức : \(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\) biết \(x>0\).
Ta có : \(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}-2\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3\left(x+\frac{1}{x}\right)\ge6\) \(\left(x>0\right)\).
Vậy \(P_{Min}=6\) khi \(x=1.\)
Happy New year :)