Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Simp Sonic
Xem chi tiết
Thư Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 8:20

a: Xét tứ giác AMCK có 

I là trung điểm của AC
I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: \(S_{ABC}=\dfrac{AM\cdot BC}{2}=3\cdot4=12\left(cm^2\right)\)

Hoàng Quỳnh Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 10:39

a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)

b: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

góc AHB=90 độ

=>AHBE là hình chữ nhật

c: Xét tứ giác ABFC có

H là trung điểm chung của AF và BC

AB=AC

=>ABFC là hình thoi

kim hanie
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2023 lúc 7:12

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCK là hình chữ nhật

b: BM=CM=BC/2=3cm

\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)

S=1/2*AM*BC=1/2*6*4=3*4=12cm2

c: Để AMCK là hình vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

Sora
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2023 lúc 22:04

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 đô

Do dó: AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

c: BM=BC/2=3cm

=>AM=4cm

SMAKC=3*4=12cm2

Long Nguyễn
Xem chi tiết
Nguyễn Thị Thùy
Xem chi tiết
Cold Wind
3 tháng 12 2016 lúc 22:59

a) là hình bình hành (chứng minh theo dấu hiệu: tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)

b) Áp dụng: trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bẳng nửa cạnh huyền.

*gợi ý: 2 tam giác vuông ABI và ACI =>  OB = OC ( = AI/2)

c) ko biết nữa

nguyễn hân
Xem chi tiết
Bùi Trần Hương Giang
Xem chi tiết
Akai Haruma
26 tháng 12 2022 lúc 13:26

Bài 2:

Tam giác $ABC$ cân tại $A$ nên phân giác $AD$ đồng thời là đường cao

$\Rightarrow AD\perp DC$. Mà $\widehat{DAC}=\widehat{BAC}:2 =45^0$ nên $\triangle DAC$ vuông cân tại $D$

$\Rightarrow DA=DC(1)$

$D,E$ đối xứng với nhau qua $AC$ nên $AC$ là trung trực của $DE$

$\Rightarrow CD=CE; AD=AE(2)$
Từ $(1); (2)\Rightarrow AD=DC=CE=EA$

$\Rightarrow ADCE$ là hình thoi.

Mà $\widehat{ADC}=90^0$ nên $ADCE$ là hình vuông.

Akai Haruma
26 tháng 12 2022 lúc 13:28

Hình bài 2:

Akai Haruma
26 tháng 12 2022 lúc 13:57

Bài 3:
Xét tam giác $ABH$ và $ACK$ có:
$\widehat{AHB}=\widehat{AKC}=90^0$
$\widehat{A}$ chung

$\Rightarrow \triangle ABH\sim \triangle ACK$ (g.g)

$\Rightarrow \frac{AB}{AH}=\frac{AC}{AK}$

Xét tam giác $AKH$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AH}{AB}=\frac{AK}{AC}$ (cmt)

$\Rightarrow \triangle AKH\sim \triangle ACB$ (c.g.c)

$\Rightarrow \widehat{K_2}=\widehat{ACB}$ và $\widehat{H_1}=\widehat{ABC}$

Xét tam giác $KEB$ và $CHB$ có:

$\widehat{KEB}=\widehat{CHB}=90^0$
$\widehat{K_1}=\widehat{K_2}=\widehat{ACB}=\widehat{HCB}$ (cmt)

$\Rightarrow \triangle KEB\sim \triangle CHB$ (g.g)

$\Rightarrow \frac{KE}{KB}=\frac{CH}{CB}(1)$
Tương tự: 

$\triangle CFH\sim \triangle CKB$ (c.g.c)

$\Rightarrow \frac{CH}{FH}=\frac{CB}{KB}(2)$

Từ $(1); (2)\Rightarrow \frac{KE}{KB}.\frac{CH}{FH}=\frac{CH}{CB}.\frac{CB}{KB}$

$\Rightarrow \frac{KE}{HF}=1$
$\Rightarrow KE=HF$ (đpcm)