Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kudo shinichi
Xem chi tiết
Edogawa Conan
21 tháng 10 2020 lúc 20:44

Ta có: \(\sqrt{2021}-\sqrt{2020}=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}=\frac{1}{\sqrt{2021}+\sqrt{2020}}\)

\(\sqrt{2020}-\sqrt{2019}=\frac{\left(\sqrt{2020}+\sqrt{2019}\right)\left(\sqrt{2020}-\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

Do \(\frac{1}{\sqrt{2021}+\sqrt{2020}}< \frac{1}{\sqrt{2020}+\sqrt{2019}}\) => \(\sqrt{2021}-\sqrt{2020}< \sqrt{2020}-\sqrt{2019}\)

Khách vãng lai đã xóa
Gia Bảo Hà Đình
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 18:37

\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\) là nghịch đảo của \(\sqrt{2021}+\sqrt{2020}\) (đpcm)

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 22:35

\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)

\(=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\)(đpcm)

Diễm Bùi
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 11 2021 lúc 20:50

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+n^2+\left(n+1\right)^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left(n^2+n\right)^2+n^2+n^2+2n+1}{\left(n^2+n\right)^2}}=\sqrt{\dfrac{\left(n^2+n\right)^2+2\left(n^2+n\right)+1}{\left(n^2+n\right)^2}}\)

\(=\sqrt{\dfrac{\left(n^2+n+1\right)^2}{\left(n^2+n\right)^2}}=\dfrac{n^2+n+1}{n^2+n}=1+\dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow A=1+\dfrac{1}{2.3}+1+\dfrac{1}{3.4}+....+1+\dfrac{1}{2021.2022}\)

\(=2020+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)

\(=2020+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(=2020+\dfrac{1}{2}-\dfrac{1}{2022}=...\)

Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 20:53

\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}=\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}}=\sqrt{\left(1+\dfrac{1}{2}-\dfrac{1}{3}\right)^2}=1+\dfrac{1}{2}-\dfrac{1}{3}\)

Cmttt ta được:

\(A=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}+1+\dfrac{1}{2021}-\dfrac{1}{2022}\\ A=2020+\dfrac{1}{2}-\dfrac{1}{2022}=2020+\dfrac{505}{1011}=...\)

Không Cần Tên
Xem chi tiết
Miinhhoa
10 tháng 8 2020 lúc 16:23

1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)

\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)

Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)

từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )

Vậy...

2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)

Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )

\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)

\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)

\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)

( cộng cả hai vế với -4040)

\(\Leftrightarrow2.2019< 4040\)

\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)

\(\Leftrightarrow2019< 2020\) ( luôn đúng )

=> điều giả sử đúng

Vậy....

4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)

theo ss phân số có cùng tử

Vậy....

phần 5 làm tương tự như phần 4 nhé

nattly
Xem chi tiết
Trương Huy Hoàng
10 tháng 10 2020 lúc 17:08

Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{\left(\sqrt{2020}-\sqrt{2019}\right)\left(\sqrt{2020}+\sqrt{2019}\right)}{\sqrt{2020}+\sqrt{2019}}\)

\(=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

\(\sqrt{2021}-\sqrt{2020}=\frac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)

\(=\frac{2021-2020}{\sqrt{2021}+\sqrt{2020}}=\frac{1}{\sqrt{2021}+\sqrt{2020}}\)

\(\sqrt{2020}+\sqrt{2019}< \sqrt{2021}+\sqrt{2020}\)

\(\Rightarrow\) \(\frac{1}{\sqrt{2020}+\sqrt{2019}}>\frac{1}{\sqrt{2021}+\sqrt{2020}}\)

Hay \(\sqrt{2020}-\sqrt{2019}>\sqrt{2021}-\sqrt{2020}\)

Chúc bn học tốt!

Khách vãng lai đã xóa
Ngô Chi Lan
Xem chi tiết
FL.Hermit
22 tháng 8 2020 lúc 15:35

TA XÉT PHÂN THỨC TỔNG QUÁT SAU:   

\(A=\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}\)

\(A=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(A=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}\)

\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

\(A=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

THAY LẦN LƯỢT CÁC GIÁ TRỊ n từ 1 => 2021 vào ta được: 

=>    \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)

=>   \(A=1-\frac{1}{\sqrt{2021}}=\frac{\sqrt{2021}-1}{\sqrt{2021}}\)

VẬY    \(A=\frac{\sqrt{2021}-1}{\sqrt{2021}}.\)

Khách vãng lai đã xóa
Nobi Nobita
22 tháng 8 2020 lúc 15:41

Ta có: \(\frac{1}{\left(a-1\right)\sqrt{a}+a.\sqrt{a-1}}=\frac{a-\left(a-1\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}\)

\(=\frac{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}=\frac{\sqrt{a}-\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}\)

\(=\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a-1}}-\frac{\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}=\frac{1}{\sqrt{a-1}}-\frac{1}{\sqrt{a}}\)

Thay lần lượt các giá trị của a bằng \(2;3;4;........;2021\)ta được:

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+.........+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2021}}=1-\frac{1}{\sqrt{2021}}\)

Khách vãng lai đã xóa
Họ Và Tên
Xem chi tiết
Edogawa Conan
21 tháng 10 2020 lúc 21:37

Đk: \(\forall x\in R\)

Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)

<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)

<=> \(\left|x-1\right|+\left|x+2\right|=2021\)

Lập bảng xét dầu

x                   -2                   1 

x - 1   -         |           -          0       +

x + 2   -        0         +          |            -

Xét các TH xảy ra :

TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021

<=> -2x = 2022 <=> x = -1011 (tm)

TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021

<=> 0x = 2018 (vô lí) => pt vô nghiệm

TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021

<=> 2x = 2020 <=> x = 1010 (tm)

Vậy S = {-1011; 1010}

Khách vãng lai đã xóa
Achana
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 5 2021 lúc 9:23

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...