Giải phương trình
\(\dfrac{1-\sqrt{x-2019}}{x-2019}+\dfrac{1-\sqrt{y-2020}}{y-2020}+\dfrac{1-\sqrt{z-2021}}{z-2021}+\dfrac{3}{4}=0\)
chung minh
\(\sqrt{2021}-\sqrt{2020}\) va \(\sqrt{2021}+\sqrt{2020}\) la so nghich dao cua nhau
so sánh
\(\sqrt{2021}-\sqrt{2020}\) và \(\sqrt{2022}-\sqrt{2021}\)
\(\sqrt{2022}-\sqrt{2020}\) và \(\sqrt{2020}-\sqrt{2018}\)
Cho B=\(\dfrac{x\sqrt{x}-2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\)
C/m: \(\dfrac{B^{2021}+1}{B^{2020}+1}>B\)
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Cho các số dương x,y,z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{z}=\dfrac{1}{x+y-z}=\dfrac{2020}{2021}\)
Tính giá trị biểu thức \(M=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}+\dfrac{1}{\sqrt{x+y-z}}\)
cho 2 số thức dương thỏa mãn \(xy>2020x+2021y\)
chứng minh rằng \(x+y>\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
Tính \(S=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{2020\sqrt{2021}+2021\sqrt{2020}}\)
so sánh \(\sqrt{2021}-\sqrt{2020}\&\sqrt{2020}-\sqrt{2019}\)