tim max : f=\(\frac{X+2}{\left|X\right|}\)
Tim Max :
E = \(\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
F = \(\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)
\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)
\(MIN_{\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)
\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)
\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)
\(MIN_{3\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)
\(\)
tìm max và min của F = \(\frac{\left(1+x\right)^8+16x^4}{\left(1+x^2\right)^4}\)
Tìm giá trị max và min
a, \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
b, \(C=\left|x-5\right|+\left|x-7\right|\)
c, \(D=x^2-2x+y^2+4y+7\)
e, \(E=\frac{4x^2-4x+1}{x^2}\)
f, \(F=\left(x-1\right).\left(x-2\right).\left(x+3\right).\left(x+6\right)\)
Trình bày cách lm nữa nha . chỉ có câu a là giá max thôi còn lại min hết nha
a) \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))
\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\) KHI X= -1
c) \(D=x^2-2x+y^2+4y+7\)
\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)
\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)
\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2
e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !
\(E=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
ĐẶT \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2
Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm
Cho \(x,y,z\in\left[2018,2019\right]\)
Tìm max của \(f\left(x,y,z\right)=\frac{\left|2018.2019-xy\right|}{\left(x+y\right)z}+\frac{\left|2018.2019-yz\right|}{\left(y+z\right)x}+\frac{\left|2018.2019-zx\right|}{\left(z+x\right)y}\)
Bai 1:a)Tim x biet\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2009}{2011}\)
b)\(\left(x-1\right)\times f\left(x\right)=\left(x+4\right)\times f\left(x\right)\)voi moi x
Bai 2;Tim x;y;z biet a)\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\) b)\(\frac{2x+1}{5}=\frac{3y-z}{7}=\frac{2x+3y-1}{6x}\)
cho x>0 tim Max \(A=\dfrac{1200x\left(12+x\right)}{\left(48+16x\right)^2}\)
\(A=\dfrac{75x\left(12+x\right)}{\left(12+4x\right)^2}\);\(A>0\forall x>0\)
Gọi \(A_0\in MGT\) của A
\(\Rightarrow A_0=\dfrac{75x\left(12+x\right)}{\left(12+4x\right)^2}\) có nghiệm
\(\Rightarrow A_0\left(12+4x\right)^2=75x\left(12+x\right)\)
\(\Leftrightarrow x^2\left(16A_0-75\right)+x\left(96A_0-900\right)+144A_0=0\) có nghiệm
\(\Leftrightarrow\Delta\ge0\Leftrightarrow-4A_0+25\ge0\)\(\Leftrightarrow A_0\le\dfrac{25}{4}\)
\(\Rightarrow maxA=\dfrac{25}{4}\)
Tìm Max, Min của
a.\(f\left(x\right)=\sqrt{x+1}+\sqrt{9-x}\)
b.\(f\left(x\right)=\sqrt{x}+\sqrt{2-x}+\sqrt{2x-x^2}\)
c.\(f\left(x\right)=x+\sqrt{8-x^2}+x\sqrt{8-x^2}\)
d.\(f\left(x\right)=\sqrt{x+2}+\sqrt{2-x}+\sqrt{4-x^2}\)
a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:
Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:
$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$
$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$
Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)
$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$
b)
Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:
Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:
$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$
Vậy $f_{\min}=\sqrt{2}$
Lại có, theo BĐT AM-GM:
$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$
Vậy $f_{\max}=3$
c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:
$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt như phần b.
$f_{\min}=2\sqrt{2}$
$f_{\max}=8$
d) Tương tự:
$f_{\min}=2$ khi $x=\pm 2$
$f_{\max}=2+2\sqrt{2}$ khi $x=0$
Áp dụng BĐT Cô-si để tìm Max
a. \(y=\left(x+3\right)\left(5-x\right),\left(-3\le x\le5\right)\)
b. \(y=x\left(6-x\right)\left(0\le x\le6\right)\)
c. \(y=\left(x+3\right)\left(5-2x\right)\left(-3\le x\le\frac{5}{2}\right)\)
d. \(y=\left(2x+5\right)\left(5-2x\right)\left(-\frac{5}{2}\le x\le5\right)\)
e. \(y=\left(6x+3\right)\left(5-2x\right)\left(-\frac{1}{2}\le x\le\frac{5}{2}\right)\)
f. \(y=\frac{x}{x^2+2},x\ge0\)
g. \(y=\frac{x^2}{\left(x^2+2\right)^3}\)
Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)
Áp dụng vào bài toán của bạn :
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)
b/ Tương tự
c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)
d/ Tương tự
e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)
f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)
Suy ra \(y\le\frac{1}{2\sqrt{2}}\)
..........................
g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)
\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)
\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)
\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)
Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)
Cho \(M=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{x\sqrt{x}-1}\)
a)Tìm ĐKXĐ,rút gọn
b)tim max của M