cho tam giác ABC vuông tại A, có AB = 3cm, AC= 4cm , AH là đường cao . Điểm D ,E lần lượt đối xứng với H qua AB, AC . TÍNH DE?
Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là điểm đối xứng của H qua AB và AC. Khi đó độ dài đoạn DE bằng: ........................
+) Ta có: AB vừa là đường cao vừa là đường trung tuyến
=> tam giác ADH cân tại A
=> AH = AD (1)
AC vừa là đường cao vừa là đường trung tuyến
=> tam giác AEH cân tại A
=> AH = AE (2)
Từ (1) và (2) => AH = AD = AE
+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
AH.BC = AB.AC
=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)
+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm
Vậy DE = 4,8cm
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D là điểm đối xứng của H qua AB, E là điểm đối xứng của H qua AC
a) Chứng minh BD // CE
b) Chứng minh tam giác ADB đồng dạng với tam giác AEC
c) Biết AB = 3cm, AC = 4cm. Tính DE và diện tích tam giác DHE
d) Chứng minh BD . CE = DE^2 / 4
a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút
=> AD = AH và AH = AE
Xét tam giác BDA và tam giác BHA có :
BA chung
BD = BH (theo tính chất nêu trên) => tam giác BDA = tam giác BHA (1)
AD = AH
Xét tam giác AHC và tam giác AEC có :
AC chung
AH = AE => tam giác AHC = tam giác AEC (2)
CH = CE (như tính chất nêu trên)
Từ (1)
=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)
Từ (2) ta cũng có :
\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)
Ta lại có :
\(\widehat{HAB}+\widehat{HAC}=90^0\)
\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)
=> D , A , E thẳng hàng
VÀ AD vuông góc với BD
AE vuông góc với CE
MÀ AD , AE thuộc DE
=> BD // CE
b) Ta có :
\(\widehat{BAD}+\widehat{CAE}=90^0\)
\(\widehat{BAD}+\widehat{DBA}=90^0\)
=> \(\widehat{DBA}=\widehat{CAE}\)
Nhờ vậy , ta xét tam giác DBA và tam giác EAC có :
\(\widehat{BAD}=\widehat{ACE}\)
Xét tam giác DBA và tam giác EAC có :
\(\frac{\widehat{DBA}}{\widehat{CAE}}=1\)
\(\frac{\widehat{BAD}}{\widehat{ACE}}=1\)
=> Tam giác DBA đồng dạng với tam giác EAC (theo trường hợp đặc biệt góc - góc)
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Từ H kẻ HM ^ AB, HK ^ AC (M trên AB, K trên AC)
a. Chứng minh AH = MK.
b. Gọi D và E lần lượt là các điểm đối xứng của H qua AB và AC.
Chứng minh D đối xứng với E qua A
c. Chứng minh BD // CE
d. Trên CK lấy điểm F sao cho KF = HM, HI song song DE (I thuộc EC)
Chứng minh ba đường thẳng AC, HI và EF đồng quy
a: Xét tứ giác AKHM có
\(\widehat{AKH}=\widehat{AMH}=\widehat{MAK}=90^0\)
Do đó: AKHM là hình chữ nhật
Suy ra: AH=KM
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH Từ H kẻ HM vuông góc AB HK vuông góc AC (M trên AB,K trên AC
a) chứng minh AH=MK
b)Gọi D và E lần lượt là các điểm đối xứng của H qua AB và A Chứng minh D đối xứng với E qua A
c) chứng minh BD// CE
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
Cho \(\Delta ABC\) vuông tại A, đường cao AH. Gọi D và E lần lượt là các điểm đối xứng với H qua AB, AC.
a, C/minh: \(DE^2=4BD.CE\)
b, Biết AB = 3cm. AC = 4cm. Tính DE và \(S_{DHE}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M và N lần lượt là các điểm đối xứng của H qua AB và AC. AB giao với MH tại E, AC giao với HN tại F.
a) Tứ giác AEHF là hình gì ?
b)Tính EF. Giả sử AB=3cm,AC=4cm
c)Chứng minh rằng:A là trung điểm của MN
d)Chứng minh MN là tiếp tuyến của đường tròn ngoại tiếp của tam giác ABC
a: Ta có: H và M đối xứng nhau qua AB
nên AB là đường trung trực của HM
Suy ra: AB\(\perp\)HM và E là trung điểm của HM
Ta có: H và N đối xứng nhau qua AC
nên AC là đường trung trực của HN
Suy ra: AC\(\perp\)HN tại F và F là trung điểm của NH
Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AEH}=\widehat{AFH}=90^0\)
Do đó: AEHF là hình chữ nhật
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt đối xứng với H qua AB và AC.
a) Chứng minh 3 điểm A, D, E thẳng hàng.
b) Tứ giác BDEC là hình thang vuông;c,DE=2AH
Bài: Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K lần lượt là hình chiếu của H trên AB, AC.
a)Tính S tam giác AIK biết AB=3cm, AC=5cm
b) Gọi E đối xứng với H qua AB. Đường thẳng vuông góc với BC tại B cắt AE tại M. Chứng minh IK, AH, CM đồng quy
Giúp mình vs ạ :)
a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)
-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.
\(\Rightarrow\)△ACH∼△BCA (g-g)
\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).
△ABC có: IH//BC (cùng vuông góc AB).
\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).
-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).
\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).
\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).
-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AIK∼△ACB (g-g).
\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)
\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)
b) *CM cắt AH tại D, BM cắt AC tại F.
AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.
E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).
\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)
\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).
\(\Rightarrow BM=FM\) nên M là trung điểm BC.
-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).
-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)
\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.
\(\Rightarrow\)D là trung điểm IK.
-Vậy IK, AH, CM đồng quy tại D.
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Qua H kẻ HD,HE theo thứ tự vuông góc với AB,AC (D thuộc AB, E thuộc AC). Vẽ hai điểm M,N lần lượt đối xứng với H qua D và E. Chứng minh M đối xứng với N qua A.