Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Riki Hime
Xem chi tiết
Nguyễn Quang Trung
27 tháng 12 2015 lúc 15:56

+) Ta có: AB vừa là đường cao vừa là đường trung tuyến

=> tam giác ADH cân tại A

=> AH = AD (1)

AC vừa là đường cao vừa là đường trung tuyến

=> tam giác AEH cân tại A

=> AH = AE (2)

Từ (1) và (2) => AH = AD = AE

+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)

AH.BC = AB.AC

=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)

+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm

Vậy DE = 4,8cm

phong
Xem chi tiết
Kurosaki Akatsu
20 tháng 6 2017 lúc 22:25

A B C H D

Kurosaki Akatsu
20 tháng 6 2017 lúc 22:33

a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút 

=> AD = AH và AH = AE

Xét tam giác BDA và tam giác BHA có :

BA chung 

BD = BH (theo tính chất nêu trên)            => tam giác BDA = tam giác BHA  (1)

AD = AH 

Xét tam giác AHC và tam giác AEC có :

AC chung 

AH = AE                                                => tam giác AHC = tam giác AEC  (2)

CH = CE (như tính chất nêu trên)

Từ (1) 

=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)

Từ (2) ta cũng có :

\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)

Ta lại có :

\(\widehat{HAB}+\widehat{HAC}=90^0\)

\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)

=> D , A , E thẳng hàng 

VÀ AD vuông góc với BD

     AE vuông góc với CE

MÀ AD , AE thuộc DE

=> BD // CE

Kurosaki Akatsu
20 tháng 6 2017 lúc 22:40

b) Ta có :

\(\widehat{BAD}+\widehat{CAE}=90^0\)

\(\widehat{BAD}+\widehat{DBA}=90^0\)

=> \(\widehat{DBA}=\widehat{CAE}\)

Nhờ vậy , ta xét tam giác DBA và tam giác EAC có :

\(\widehat{BAD}=\widehat{ACE}\)

Xét tam giác DBA và tam giác EAC có :

\(\frac{\widehat{DBA}}{\widehat{CAE}}=1\)

\(\frac{\widehat{BAD}}{\widehat{ACE}}=1\)  

=> Tam giác DBA đồng dạng với tam giác EAC (theo trường hợp đặc biệt góc - góc)

HELP ME
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 9:31

a: Xét tứ giác AKHM có 

\(\widehat{AKH}=\widehat{AMH}=\widehat{MAK}=90^0\)

Do đó: AKHM là hình chữ nhật

Suy ra: AH=KM

Hà Chí Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2023 lúc 23:37

a: Xét tứ giác AMHK có

góc AMH=góc AKH=góc KAM=90 độ

=>AMHK là hình chữ nhật

=>AH=MK

b: Xét ΔAHD có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AH=AE và AC là phân giác của góc HAE(2)

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

c: Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 dộ

=>BD vuông góc DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>goc AEC=90 độ

=>CE vuông góc ED(4)

Từ (3), (4) suy ra BD//CE

Cỏ dại
Xem chi tiết
Hữu Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:23

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của HM

Suy ra: AB\(\perp\)HM và E là trung điểm của HM

Ta có: H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

Suy ra: AC\(\perp\)HN tại F và F là trung điểm của NH

Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật

marie
Xem chi tiết
Lê Minh Anh
Xem chi tiết
Trần Tuấn Hoàng
3 tháng 5 2022 lúc 10:01

a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)

-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.

\(\Rightarrow\)△ACH∼△BCA (g-g) 

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).

△ABC có: IH//BC (cùng vuông góc AB).

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).

-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).

\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).

\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).

-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AIK∼△ACB (g-g).

\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)

\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)

Trần Tuấn Hoàng
3 tháng 5 2022 lúc 10:12

b) *CM cắt AH tại D, BM cắt AC tại F.

AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.

E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).

\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)

\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).

\(\Rightarrow BM=FM\) nên M là trung điểm BC.

-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).

-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)

\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.

\(\Rightarrow\)D là trung điểm IK.

-Vậy IK, AH, CM đồng quy tại D.

Reona Yên
Xem chi tiết