Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Gia Anh Vũ
Xem chi tiết
Nguyễn Quỳnh Chi
8 tháng 10 2016 lúc 22:25

Ta có:

x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)

  = \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)

  = \(\frac{1}{2}\)(\(\sqrt{2}\)-1)

=> 2x = \(\sqrt{2}\)-1

=> (2x)2= ( \(\sqrt{2}\)-1)2

=> 4x2= 2-2\(\sqrt{2}\)+1

=> 4x2= -2( \(\sqrt{2}\)-1)+1

=> 4x2= -4x +1 => 4x2+4x-1=0

Lại có:

A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19

   = [  x3( 4x2+4x-1) +1]19

   =1

    A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3

       = (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3

       = 23=8

  A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)

     = \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)

Cộng 3 số vào ta được A

ShinRan
6 tháng 10 2016 lúc 20:03

no biet

Trần Cao Vỹ Lượng
6 tháng 10 2016 lúc 20:32

i don't known

tran huu dinh
Xem chi tiết
Trương Trọng Tiến
Xem chi tiết
Gae Song
Xem chi tiết
nguyễn minh
Xem chi tiết
nguyễn minh
21 tháng 6 2019 lúc 20:55

\(1-\sqrt{2}x\) nha

Nguyễn Việt Lâm
21 tháng 6 2019 lúc 21:38

\(x=\frac{1}{2}\left(\sqrt{2}-1\right)\)

\(\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow4x^2=3-2\sqrt{2}=1-4.\frac{1}{2}\left(\sqrt{2}-1\right)=1-4x\)

\(\Leftrightarrow4x^2+4x-1=0\)

\(\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=1^{19}=1\)

\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1+4}^3=\sqrt{4}^3=8\)

\(\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}\left(4x^2+4x-1\right)+\frac{1}{2}}}=\frac{1-\sqrt{2}x}{\sqrt{\frac{1}{2}}}=\sqrt{2}-2x=\sqrt{2}-\left(\sqrt{2}-1\right)=1\)

\(M=1+8+1=10\)

Lê Thanh Ngọc
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:34

a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)

\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)

Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)

Phương trình trở thành:

\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)

\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)

Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(

b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)

Pt trở thành:

\(a+10\left(\frac{a^2-5}{4}\right)=13\)

\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)

\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:40

c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)

\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)

Đặt \(x\sqrt{2x^2+4}=a\) ta được:

\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:52

d/ ĐKXĐ: \(x\ge1\)

Nhân cả tử và mẫu của vế phải với liên hợp của nó ta được:

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x-1}\right)^2-3=\frac{\sqrt{x+1}+\sqrt{x+1}}{2}\)

Đặt \(\sqrt{x+1}+\sqrt{x-1}=a>0\)

\(\Rightarrow a^2-3=\frac{a}{2}\Rightarrow2a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}+\sqrt{x-1}=2\)

\(\Leftrightarrow x+\sqrt{x^2-1}=2\)

\(\Leftrightarrow\sqrt{x^2-1}=2-x\) (\(x\le2\))

\(\Leftrightarrow x^2-1=x^2-4x+4\)

\(\Rightarrow x=\frac{5}{4}\)

Khách vãng lai đã xóa
nguyen thi khanh nguyen
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2020 lúc 10:15

\(A=\lim\limits_{x\rightarrow0}\frac{\left(x+1\right)^{\frac{1}{3}}-1}{\left(2x+1\right)^{\frac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(x+1\right)^{-\frac{2}{3}}}{\frac{1}{2}\left(2x+1\right)^{-\frac{3}{4}}}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}\)

\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}=\frac{3\sqrt{5}}{0}=+\infty\)

\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(3x+1\right)\left(4x+1\right)}\left(\sqrt{2x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}\left(\sqrt{3x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}-1}{x}\)

Xét \(\lim\limits_{x\rightarrow0}\frac{\sqrt{ax+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\left(ax+1\right)^{\frac{1}{2}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{2}\left(ax+1\right)^{-\frac{1}{2}}}{1}=\frac{a}{2}\)

\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}=\frac{9}{2}\)

\(D=\lim\limits_{x\rightarrow0}\frac{\left(1+4x\right)^{\frac{1}{2}}-\left(1+6x\right)^{\frac{1}{3}}}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\left(1+4x\right)^{-\frac{1}{2}}-2\left(1+6x\right)^{-\frac{2}{3}}}{2x}\)

\(D=\lim\limits_{x\rightarrow0}\frac{-2\left(1+4x\right)^{-\frac{3}{2}}+4\left(1+6x\right)^{-\frac{5}{3}}}{1}=-2+4=2\)

\(E=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-\left(1+bx\right)^{\frac{1}{n}}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}-\frac{b}{n}\left(1+bx\right)^{\frac{1-n}{n}}}{1}=\frac{a-b}{n}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
2 tháng 4 2020 lúc 15:39

\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}-\sqrt{x+2}}{\sqrt[4]{2x+2}-2}=\lim\limits_{x\rightarrow7}\frac{\left(4x-1\right)^{\frac{1}{3}}-\left(x+2\right)^{\frac{1}{2}}}{\left(2x+2\right)^{\frac{1}{4}}-2}\)

\(B=\lim\limits_{x\rightarrow7}\frac{\frac{4}{3}\left(4x-1\right)^{-\frac{2}{3}}-\frac{1}{2}\left(x+2\right)^{-\frac{1}{2}}}{\frac{1}{2}\left(2x+2\right)^{-\frac{3}{4}}}=\lim\limits_{x\rightarrow7}\frac{\frac{4}{3\sqrt[3]{\left(4x-1\right)^2}}-\frac{1}{2\sqrt{x+2}}}{\frac{1}{2}\sqrt[4]{\left(2x+2\right)^3}}\)

\(=\frac{\frac{4}{3\sqrt[3]{27^2}}-\frac{1}{2\sqrt{9}}}{\frac{1}{2}\sqrt[4]{16^3}}=-\frac{1}{216}\)

Khách vãng lai đã xóa
Cầm Dương
Xem chi tiết
Hoàng Thị Lan Hương
4 tháng 7 2017 lúc 17:13

\(x=\left(\sqrt{10}-\sqrt{6}\right).\frac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\frac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right).\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

Vậy N=\(\frac{\sqrt{4x+4+\frac{1}{x}}}{\sqrt{x}.\left|2x^2-x-2\right|}=\frac{\sqrt{4.2+4+\frac{1}{2}}}{\sqrt{2}.\left|2.2^2-2-2\right|}\)

\(=\frac{\sqrt{\frac{25}{2}}}{4\sqrt{2}}=\frac{5}{8}\)