Tìm GTNN
B=(x-1)^2016+\(\left|y+3\right|\) +2017
Tìm x ; y biết: \(\hept{\begin{cases}x^{2017}+y^{2017}=1\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)
Điều kiện: \(x,y\ge0\)
Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ
Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)
Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)
\(\Leftrightarrow x=y\)
Thế vô (1) ta được:
\(2x^{2017}=1\)
\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)
cho x,y,z thỏa mãn \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
tìm B=\(\left(x^{2016}+y^{2016}\right)\left(y^{2017}+z^{2017}\right)\left(z^{2018}+x^{2018}\right)\)
Tìm x , y, z :
\(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+|x+2y-z|^{2017}=0\)
Ta có
(x -1)^2016 >0; (2y-1)^2016>0; /x+2y-z/^2017>0
Mà tổng ba số trên bằng 0
=>(x-1)^2016=0 ; (2y-1)^2016=0; /x+2y-z/=0
=>x=1; y=1/2; z= 2
Tìm x biết :
\(\left|x-2016\right|^{2017}+\left|x-2017\right|^{2016}=1\)
|x-2016|2016+|x-2017|2016=1
|x-2016|2016=1 hoặc |x-2017|2016=1
th1:|x-2016|2016=1
|x-2016|2016=12016
x-2016=1
x=1+2016
x=2017
th2:
làm tương tự
Tìm x biết : \(|\left|3x-3\right|+2x+\left(-1\right)^{2016}|=3x+2017^0\)
Tìm x, biết:\(\left(1+5+5^2+5^3+...+5^{2016}\right).\left|x-1\right|=5^{2017}-1\)
Đặt \(S=1+5+5^2+5^3+...+5^{2016}\)
\(\Rightarrow5S=5+5^2+5^3+...+5^{2017}\)
\(\Rightarrow4S=5S-S=5+5^2+...+5^{2017}-1-5-...-5^{2016}=5^{2017}-1\)
\(\Rightarrow S=\dfrac{5^{2017}-1}{4}\)
Theo đề bài ta được: \(S.\left|x-1\right|=5^{2017}-1\)
\(\Leftrightarrow\dfrac{5^{2017}-1}{4}.\left|x-1\right|=5^{2017}-1\Leftrightarrow\dfrac{\left|x-1\right|}{4}=1\)
\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Tìm các cặp số nguyên x, y biết:
\(\left|x-2015\right|+\left|1007-\frac{1}{2}y\right|+\left|x-2016\right|+\left|2017-x\right|=2\)
giải hệ phương trình :
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2016]{x}-\sqrt[2016]{y}=\left(\sqrt[2017]{y}-\sqrt[2017]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
3.
ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow (1+\sqrt{x^2+4033}).\frac{(x+2016)-(x+1)}{\sqrt{x+2016}+\sqrt{x+1}}=2015\)
\(\Leftrightarrow 1+\sqrt{x^2+4033}=\sqrt{x+2016}+\sqrt{x+1}\)
\(\Leftrightarrow (1+\sqrt{x^2+4033})^2=(\sqrt{x+2016}+\sqrt{x+1})^2\)
Áp dụng BĐT Bunhiacopxky:
\(\text{VP}\leq 2(x+2016+x+1)=4x+4034\)
\(\text{VP}=x^2+4034+2\sqrt{x^2+4033}\geq x^2+4034+2\sqrt{4033}>x^2+4034+5\)
Mà: $x^2+4034+5-(4x+4034)=(x-2)^2+1> 0$
$\Rightarrow x^2+4034+5> 4x+4034$
$\Rightarrow \text{VP}> \text{VT}$
Do đó pt vô nghiệm.