Chứng minh số có dạng: A= 34n+4-43n+3 chia hết cho 17 ( n ϵ N )
Cho S là tập hợp các số nguyên dương n có dạng n = x2+3y2 , trong đó x, y là các số nguyên. Chứng minh rằng nếu A ϵ S và A là số chẵn thì A chia hết cho 4 và A/4 ϵ S.
A thuộc S thì A=x^2+3y^2
Nếu x chia hết cho 2 thì từ N chẵn, ta có y chia hết cho 2
=>N/4 thuộc S
Nếu x,y lẻ thì x^2-9y^2 đồng dư ra 1-9=0 mod 8
=>x-3y chia hết cho4 hoặc x+3y chia hết cho 4
Nếu x-3y chia hết cho 4 thì A/4=(x-3y/4)^2+3(x+y/4)^2
=>A/4 thuộc S
Chứng minh tương tự, ta cũng được nếu x+3y chia hết cho 4 thì A/4 cũng thuộc S
=>ĐPCM
a) Chứng minh rằng \(a-5b\) chia hết cho 17 ↔ \(10a+b\) chia hết cho 17 với a , b ϵ N
b) Hãy viết thêm 3 chữ số vào số 523 để được 1 số có 6 chữ số chia hết cho 6 ; 7 ; 8 ; 9
Chứng minh số có dạng: A= 34n+4-43n+3 chia hết cho 17 ( \(n\varepsilon N\))
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b) Cho A = ( 17n + 1 ) ( 17n + 2 ) \(⋮\) 3 Với mọi n ϵ N
a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)
- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)
- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)
Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)
2) Chứng minh rằng: với mọi số tự nhiên n tích (n+4)(n+7) là số chẵn
3) Tìm x ϵ N biết : a) 101 chia hết cho x - 1
b) (a+3) chia hết cho (a+1)
4) So sánh: \(^{8^9}\) và \(^{9^8}\) (về mũ 5)
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
cíu t đi =))
a,chứng minh mọi n ϵ N* ta luôn có
1^2 + 2^2 + 3^2 +...+ n^2 = n ( n+1 ) ( 2n+1 ) chia 6
b,Chứng minh rằng A = 1.5 + 2.6 +3.7 +.... + 2023.2027 chia hết cho các số 11, 23 và 2023.
c,Tìm tất cả các số tự nhiên n ( 1 ≤ n ≤ 2000) để biểu thức B = 1.3 + 2.4 +... n ( n + 2 ) chia hết cho 2027.
a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)
- Với \(n=1:\)
\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)
- Với \(n=k:\)
\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)
- Với \(n=k+1:\)
\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))
Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)
r đáp án đâu :)) t bị ngu lên đây thành bị khờ =))))))))
Chứng minh rằng tìm được 1 số có dạng (17^n)-1 chia hết cho 41
Bài 1 Chứng minh rằng 17^5 + 24^4 - 13^21 chia hết cho 10
Bài 2 Cho A bằng { (1 + 2+ 3 + .. . + n ) - 7 } . Hỏi A có chia hết cho 10 không ?
Bài 3 Tìm chữ số tận cùng của 5^ n (n>1)
Bài 4 Chứng minh rằng
a Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
b Trong 4 số tự nhiên liên tiếp có một số chia hết cho 4
c Trong năm số tự nhiên liên tiếp có một số chia hết cho 5
Cho m,n,t là ba số nguyên tố lớn hơn 3 thoả mãn: m - n = n - t = a ( a ϵ N* ). Chứng minh rằng a chia hết cho 6.
Ai nhanh và đúng tick nhaaaa