phân tích đa thức sau thành nhân tử: x\(^4\)-4x\(^3\)+8x+3
Mấy chế giúp e ạ!!!!!!!!!
phân tích các đa thức sau thành nhân tử x^4 -4x^3-8x^2+8x
x4 - 4x3 - 8x2 + 8x
= x(x3 - 4x2 - 8x + 8)
= x[x3 + 8 - 4x(x + 2)]
= x[(x + 2)(x2 - 2x + 4) - 4x(x + 2)]
= x(x + 2)(x2 - 6x + 4)
= x(x + 2)(x2 - 6x + 9 - 5)
= \(x\left(x+2\right)\left[\left(x-3\right)^2-5\right]=x\left(x+2\right)\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)\)
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x^3-6x^2+2x^2+4x-12x+8\right)\)
\(=x\left[\left(x^3-6x^2+4x\right)+\left(2x^2-12x+8\right)\right]\)
\(=x\left[x\left(x^2-6x+4\right)+2\left(x^2-6x+4\right)\right]\)
\(=x\left(x^2-6x+4\right)\left(x+2\right)\)
\(=x\left[\left(x-3\right)^2-\left(\sqrt{5}\right)^2\right]\left(x+2\right)\)
\(=x\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\left(x+2\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
\(x^3-x^2-4x^2+8x-4\)
\(=x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\\ =\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
\(x^3-x^2-4x^2+8x-4\)
\(=x^3-4x^2-4x-x^2+4x-4\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
phân tích đa thức thành nhân tử
x2+4x+3
mấy bạn đại lượng giúp misha giải CHI TIẾT bài này nha , thanks mấy bạn nhìu ^^
\(x^2+3x+x+3=\left(x+1\right)\left(x+3\right)\)
\(=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
\(x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
1. phân tích các đa thức sau thành nhân tử = phương pháp nhóm hạng tử: x^3-4x^2-8x+8
mik bấm máy tính nó ra mỗi nghiệm là -2 thui bạn cứ tách từ từ nha bạn
Phân tích đa thức thành nhân tử
x^4+8x^3+15x^2-4x-2
x4+8x3+15x2-4x-2
= (x4+4x3+x2)+(4x3+16x2+4x)-(2x2+8x+2)
= x2.(x2+4x+1)+4x.(x2+4x+1) -2(x2+4x+1)
= (x2+4x+1).(x2+4x-2)
phân tích đa thức thành nhân tử
x^4+8x^3+15x^2-4x-2
Phân tích đa thức thành nhân tử:
4x^4-8x^3+3x^2-8x+4
\(4x^4-8x^3+3x^2-8x+4\)
\(=\left(4x^4-8x^3\right)+\left(3x^2-6x\right)-\left(2x-4\right)\)
\(=4x^3\left(x-2\right)+3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(4x^3+3x-2\right)\)
phân tích các đa thức sau thành nhân tử
a, 4x^4 + 4x^3 - x^2 - x
b, x^6 - x^4 - 9x^3 + 9x^2
c, x^4 - 4x^3 + 8x^2 - 16x + 16
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)