Giúp mk bài 7.11
Giúp mk bài 7.11
Bài 1 tính nhanh
S=3/1.4+3/4.7+3/7.11+3/11.14+3/14.17
M=2/1.2+2/2.3+2/3.4+......+2/15.16
Giúp mk vs nhé
Mk tích cho
*S=1-1/4+1/4-1/7+1/7-1/11+1/11-1/14+1/14-1/17
S=1-1/17=16/17
*M=2(1/1.2+1/2.3+...+1/15.16)
M=2(1-1/2+1/2-1/3+..+1/15-1/16)
M=2(1-1/16)
M=2.15/16
M=15/8
:w
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(S=1-\frac{1}{17}\)
\(S=\frac{16}{17}\)
\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{15.16}\)
\(M=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(M=2.\left(1-\frac{1}{16}\right)\)
\(M=2.\frac{15}{16}\)
\(=\frac{30}{16}=\frac{15}{8}\)
B=2/3.7+2/7.11+2/11.15+.................2/2015.2019 . giúp mk vs
Ta có:
\(\frac{2}{3.7}+\frac{2}{7.11}+\frac{2}{11.15}+.....+\frac{2}{2015.2019}\)
\(=2.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+....+\frac{1}{2015.2019}\right)\)
\(=\frac{2}{4}.\left(\frac{2}{3.7}+\frac{2}{7.11}+\frac{2}{11.15}+....+\frac{2}{2015.2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{2015}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\frac{224}{673}=\frac{112}{673}\)
**** ^^
A)36.4-4.82-7.11²:4-2016⁰ B)303-3.[655-18:2+1.4³+5]:10⁰ C)23.75+25.10+25.13+180 Giúp mk nhanh nha mk đg rất cần ạ.
c: \(23\cdot75+25\cdot10+25\cdot13+180\)
\(=25\left(23\cdot3+10+13\right)+180\)
\(=25\cdot98+180\)
=2450+180
=2630
So sánh tổng S với 251
S = \(\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-\dfrac{1}{11.15}-\dfrac{1}{15.19}-\dfrac{1}{19.23}-\dfrac{1}{23.27}\)
Mai mk thi r cho mình xem cách làm bài này nhé. Giúp mình với. HELP ME !!!
C= 1/1.4+1/4.7+1/7.11+...+1/994.997+1/997.1000
Giúp tui với
Để olm.vn giúp em nhá
C = \(\dfrac{1}{1.4}\) + \(\dfrac{1}{4.7}\) + \(\dfrac{1}{7.11}\)+...+ \(\dfrac{1}{994.997}\) + \(\dfrac{1}{997.1000}\)
C = \(\dfrac{1}{3}\).( \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.11}\)+...+ \(\dfrac{3}{994.997}\)+ \(\dfrac{3}{997.1000}\))
C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\)-\(\dfrac{1}{11}\)+...+ \(\dfrac{1}{994}\)- \(\dfrac{1}{997}\)+ \(\dfrac{1}{997}\) - \(\dfrac{1}{1000}\))
C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{1000}\))
C = \(\dfrac{1}{3}\). \(\dfrac{999}{1000}\)
C = \(\dfrac{333}{1000}\)
cho em hởi 4/3.7+4/7.11+4/11.15+...4/59.63 giúp em với ạ
\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{59.63}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{59}-\dfrac{1}{63}\)
\(=\dfrac{1}{3}-\dfrac{1}{63}\)
\(=\dfrac{20}{63}\)
Mk có mấy bài toàn cần các bạn giải giúp:
Câu 1: 4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27
Câu 2:3/14+3/84+3/204+3/374+3/594+3/864
Câu 3:1/10+1/40+1/88+1/154+1/238+1/340
Câu 4:37/7+37/91+37/247+37/475+37/775+37/1147
Câu 5:1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90+109/110
Mk đang cần gấp đề ko sai đâu nha thầy mk cho đấy
Nhớ giải cho mk trong thời gian sớm nhất nhoa
1.\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{23}-\frac{4}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
2. Đặt \(A=\frac{3}{14}+\frac{3}{84}+\frac{3}{204}+\frac{3}{374}+\frac{3}{594}+\frac{3}{864}\)
\(\Rightarrow A=\frac{3}{2.7}+\frac{3}{7.12}+...+\frac{3}{27.32}\)
\(\Rightarrow5A=3.\left(\frac{5}{2.7}+\frac{5}{7.12}+...+\frac{5}{27.32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{27}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\frac{15}{32}=\frac{45}{32}\Rightarrow A=\frac{45}{32}:5=\frac{9}{32}\)
3. Đặt \(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\)
\(\Rightarrow3S=\frac{3}{10}+\frac{3}{40}+...+\frac{3}{340}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\Rightarrow S=\frac{9}{20}:3=\frac{3}{20}\)
Câu 1:
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
Câu 1:
\(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
Áp dụng tính chất \(\frac{b}{a\left[a+b\right]}=\frac{1}{a}-\frac{1}{a+b}\), ta có:
\(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
Câu 2 tương tự nhưng phải phân
\(\frac{3}{14}+\frac{3}{84}+\frac{3}{204}+...+\frac{3}{864}=\frac{3}{2\cdot7}+\frac{3}{7\cdot12}+\frac{3}{12\cdot17}+...+\frac{3}{27\cdot32}\)
Cái này áp dụng công thức \(\frac{a}{b\left[b+c\right]}=\frac{a}{c}\left[\frac{1}{b}-\frac{1}{b+c}\right]\), ta có:
\(\frac{3}{2\cdot7}+\frac{3}{7\cdot12}+\frac{3}{12\cdot17}+...+\frac{3}{27\cdot32}=\frac{3}{5}\left[\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{27}-\frac{1}{32}\right]\)
\(=\frac{3}{5}\left[\frac{1}{2}-\frac{1}{32}\right]=\frac{3}{5}\cdot\frac{15}{32}=\frac{9}{32}\)
Câu 3:
tương tự quy laautj mẫu là 2.5; 5.8 ....
Câu 4: qL mẫu là 1.7; 7.13; ....
Câu 5: \(=\left[1-\frac{1}{2}\right]+\left[1-\frac{1}{6}\right]+...+\left[1-\frac{1}{110}\right]\)
\(=\left[1-\frac{1}{1\cdot2}\right]+\left[1-\frac{1}{2.3}\right]+\left[1-\frac{1}{3\cdot4}\right]+...+\left[1-\frac{1}{10.11}\right]\)
\(=10-\frac{9}{10}=\frac{91}{10}\)
Tính tổng : S= 1/3.7+1/7.11+....+1/19.23
Ai làm đúng và nhanh nhất mk like cho :)
S=1/3.7+1/7.11+...+1/19.23 (1)
Nhân cả 2 vế của đẳng thức (1) với 4 ta được:
4S=4/3.7+4/7.11+...+4/19.23
4S=1/3.7+1/7.11+...+1/19.23
4S=1/3-1/7+1/7-1/11+..+1/19-1/23
4S=1/3-1/23
4S=20/69
S =20/69:4
S =5/69
Mọi người ủng hộ mik nha
\(S=\frac{1.4}{3.7.4}+\frac{1.4}{7.11.4}+......+\frac{1.4}{19.23.4}\)
\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+......+\frac{4}{19.23}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\frac{17}{60}=\frac{17}{240}\)
\(S=\frac{1.4}{3.7.4}+\frac{1.4}{7.11.4}+......+\frac{1.4}{19.23.4}\)
\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+......+\frac{4}{19.23}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+......+\frac{1}{19}-\frac{1}{23}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{23}\right)\)
\(=\frac{1}{4}.\frac{20}{69}=\frac{5}{69}\)