cho ▲ABC vuông ở A, phân giác AD. CM: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
HELP ME:
Cho tam giác ABC vuông tại A. Phân giác AD.
CM: \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Ta có : \(S_{ABC}=S_{DAB}+S_{DAC}\)
\(\frac{1}{2}AB.AC=\frac{1}{2}AB.AD.sin45^o+\frac{1}{2}AC.AD.sin45^o=\frac{1}{2}AD.sin45^o\left(AB+AC\right)\)
\(\Leftrightarrow\frac{AB+AC}{AB.AC}=\frac{\sqrt{2}}{AD}\Leftrightarrow\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Cho tam giác ABC vuông ở A . Vẽ đường phân giác AD (D thuộc BC) . C/M \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
Cho tam giác ABC vuông tại A , phân giác trong AD và phân giác ngoài AE.Cho biết AB<AC.CMR
a, \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b,\(\frac{1}{AB}-\frac{1}{AC}=\frac{\sqrt{2}}{AE}\)
a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)
\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)
\(S_{ABC}=\frac{1}{2}AB.AC\)
Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
b/ Tương tự
Cho tam giác ABC vuông tại A, AD là phân giác (AB<AC).Chứng minh:
\(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
Cho tam giác ABC vuông tại A. đường phân giác AD. Chứng minh rằng: \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Ta có : SABC=SDAB+SDAC
12AB.AC=12AB.AD.sin45o+12AC.AD.sin45o=12AD.sin45o(AB+AC)
Cho tam giác ABC vuông tại A, phân giác AD. Chứng minh rằng : \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Cho tam giác ABC . Lay D thuộc BC. Kẻ Bx//AD và Bx cắt CA ở I . Kẻ Cy //AD và Cy cắt BA ở K
a) CM: \(\frac{1}{BI}+\frac{1}{CK}=\frac{1}{AD}\)
b) Nếu \(\widehat{BAC=120^0}\)và AD là đường phân giác tam giác ABC
CM: \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AO}\)
c) Nếu \(\widehat{BAC=90^0}\)và AD là đường phân giác tam giác ABC
CM: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
Cho tam giác ABC vuông tại A,phân giác AD
a,CM \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
b, Gọi I là giao điểm các đường phân giác của tam giác ABC, biết \(IB=\sqrt{5},IC=\sqrt{10}\). Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A,phân giác AD
a,CM √2AD =1AB +1AC
b, Gọi I là giao điểm các đường phân giác của tam giác ABC, biết IB=√5,IC=√10. Tính diện tích tam giác ABC
a) Đặt AB = c; AC = b; AD = d.
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có:
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2
Tương tự: S ACD = ½bd.1/√2
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2
mà S ABC = ½bc
=> ½d(b + c)/√2 = ½bc
=> (b + c)/bc = √2/d
<=> 1/b + 1/c = √2/d
b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC.
Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E.
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh)
tam giác AEB ~ tam giác HEC(g.g)
Góc HCE = góc ABE.
Góc HCE = góc ABC/2 (1)
Mà Góc ECI = gócACB/2 (2)
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ.
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ)
tam giác HIC vuông cân tại H => HI = HC.
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC²
√2.IH = IC hay CH = IC/√2.
CH =HI=√10 /√2
Suy ra BH=HI+IB=√10 /√2+√5
=>BC=√((√10 /√2+√5)²+(√10 /√2)²)
KC = 2CH = 2.√10/√2
Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC²
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3)
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4)
Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB²
20 - (x² - 2ABx +AB²) = x² - AB²
=>10=x(x-AB)
sau đó tính AB rồi tính AC And S ABC
Cho tam giác ABC vuông tại A , có tia phân giác AD . CMR
\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{\sqrt{2}}{AD}\)
Đặt AB = a ; AC = b ; AD = c . Kẻ DE vuông góc AC ( \(E\in AB;F\in AC\) )
Ta có tứ giác AFDE là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) , AD phân giác trong của \(\widehat{EAF}\) nên \(\widehat{AFDE}\) là hình vuông . Suy ra
\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{C\sqrt{2}}{2}\) . Ta có :
\(S_{DAB}+S_{DAC}=S_{ABC}\)
\(\Leftrightarrow\frac{1}{2}AB.DE+\frac{1}{2}DF.AC=\frac{1}{2}AC.AB\)
\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)
\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) . Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Chúc bạn học tốt !!!