HELP ME:
Cho tam giác ABC vuông tại A. Phân giác AD.
CM: \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Tam giác ABC vuông tại A, p/g trong AD và p/g ngoài AE. C/m:
a, \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
b, \(\frac{\sqrt{2}}{AE}=\left|\frac{1}{AB}-\frac{1}{AC}\right|\)
Cảm ơn các bạn trước nhé
Câu 1 :tìm x\(\sqrt{x-2\sqrt{3x-9}}\) =\(2\sqrt{x-3}\)
câu 2:chờ a,b,c,d là các số nguyên thỏa mãn a<b<c<d và a+b=b+c .CMR a^2 +b^2 +c^2+d^2 là tổng 3 số chính phương
câu 3 :cho tam giác vuông ABC ( A=90) ,AD là phân giác của A ( D thuộc BV chứng minh \(\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{2}\)
câu4 :Tìm tất cả số tự nhiên sao cho \(n^2+17\) là số chính phương
Câu 5: cho 3 số dương x,y,z tổng =1 ,CMR : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>hoặc=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) làm giúp mình cái ,THANK YOU SO MUCH ,làm đc bão like
Tam giác ABC có đường cao CH, phân giác AD, trung tuyến BM.Kẻ MN vuông góc vs HC tại N. Từ A kẻ đường thẳng vuông góc với AC tại A, đường thẳng đó cắt BC tại P. CMR: \(\frac{NM}{BH}=\frac{AM}{AB}\)
các bạn giúp mình với:
cho a, b, c lần lượt là độ dài cạnh BC, AC, AB của tam giác ABC.
a) chứng minh \(\sin\frac{\widehat{A}}{2}\le\frac{a}{2\sqrt{bc}}\)
b) chứng minh \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
c) đường cao AD, BE cắt nhau ở h. chứng minh \(AH.HD\le\frac{BC^2}{4}\)
1. cho tam giác ABC đg cao AD cắt BE tại H . Vẽ trung tuyến AM . Gọi G là trọng tâm tam giác ABC biết HG//BC
c/m : tanB.tanC=3
2. cho tam giác ABC vg tại A
c/m :\(\frac{\tan B}{2}=\frac{AC}{AB+BC}\)
Cho tam giác ABC vuông tại A, AB<AC, đường cao AH. Kẻ HE vuông góc với AB, HF vuông góc với AC. AH cắt EF tại O. CMR:
1. AE.AB=AF.AC
2.AH^2 = AE.AB+AF.AC
3.AH^3 = BH.HE.HF
4.HB.HC=4 OE.OF
5. \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
6. \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
7. \(\sqrt{EH.EB}+\sqrt{FH.FC}=\sqrt{AH.BC}\)
Cho tam giác ABC vuông ở A , đường cao AH , BC= 100 , AH =48
a, Tính AB , AC
b, Từ B vẽ tia BX sao cho góc ABx = góc ACB . BX cắt AC tại D
Chứng Minh\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)
cho ▲ABC nhọn, đường cao AH. gọi D, E là hìn chiếu của H trên AB, AC.
a, CM: AD.AB=AE.AC
b, CM: \(\frac{AD}{BD}=\frac{AH^2}{BH^2}\)