cho hình vẽ: Ax//Cy
Vẽ hình hơi xấu
Cho hình vẽ, biết . Chứng tỏ: Ax // Cy.
Cho tam giác ABC cân tại A, có Am là đường trung tuyến. Vẽ tia Ax // BC. Vẽ tia Cy // AM, Ax cắt Cy tại I
a/ Chứng minh AM vuông góc BC
b/ Chứng minh AC = MI
c/ Chứng minh ABMI là hình bình hành
Giúp e vs ạ!
không cần vẽ hình
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Xét tứ giác AMCI có
AI//MC
AM//CI
Do đó: AMCI là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCI là hình chữ nhật
hay AC=MI
c: Ta có: AICM là hình chữ nhật
nên AI=MC
mà MB=MC
nên AI=MB
Xét tứ giác AIMB có
AI//MB
AI=MB
Do đó: AIMB là hình bình hành
trên hình vẽ cho biết Ax//Cy tính góc ABC
cho hình vẽ biết B=A+C chứng minh Ax // Cy
Kéo dài AB cắt Cy tại E và kéo dài CB cắt Ax tại G như hình vẽ dưới đây:
\(\widehat{ABC}\) = \(\widehat{GBE}\) (1) (vì đối đỉnh)
\(\widehat{GBE}\) = \(\widehat{BCE}\) + \(\widehat{CEB}\) (2) ( vì góc ngoài của tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{ABC}\) = \(\widehat{GAB}\) + \(\widehat{BCE}\) (3)
Từ (1); (2); (3) ta có: \(\widehat{BCE}\) + \(\widehat{CEB}\) = \(\widehat{GAB}\) + \(\widehat{BCE}\)
⇒ \(\widehat{CEB}\) = \(\widehat{GAB}\)
Mà hai góc CEB và góc GAB là hai góc ở vị trí so le trong nên
Cy // Ax (đpcm)
cho hình vẽ
cho Ax//Cy tính gócA +gócB+góc C
cho gócA +gócB+ góc C=360 độ, chứng tỏ Ax//Cy
Bạn ơi cho hình vẽ có Ax||Cy r thì CM làm j nx
* gợi ý: qua C vẽ đường thẳng tt' // AB và cắt Ax tại D
Qua B vẽ đường thẳng zz' // Ax
⇒ ∠ABz' = ∠BAx = 50⁰ (so le trong)
⇒ ∠CBz' = ∠ABC + ∠ABz'
= 50⁰ + 80⁰
= 130⁰
⇒ ∠CBz' = ∠BCy = 130⁰
Mà ∠CBz' và ∠BCy là hai góc so le trong
⇒ zz' // Cy
Mà zz' // Ax
⇒ Ax // Cy
Cho hình thang ABCD , có góc B = góc D = 90
Vẽ các Tia phân giác Ax và Cy
C/m Ax // Cy
Cho hình vẽ, biết Ax // Cy. Tính tổng số đo các góc BAx, ABC, BCy
Cho hình vẽ biết góc xAB + góc ABC + góc BCy = 360⁰ Chứng minh Ax//Cy
Cho hình vẽ bên, biết góc abc= góc a+ góc c
Chứng minh rằng Ax//Cy
Qua B kẻ tia Bz//Ax(Bz và Ax nằm khác phía so với đường thẳng AB)
Ta có: Bz//Ax
=>\(\widehat{zBA}=\widehat{xAB}\)
Ta có: \(\widehat{zBA}+\widehat{zBC}=\widehat{ABC}\)
\(\widehat{xAB}+\widehat{yCB}=\widehat{ABC}\)
mà \(\widehat{zBA}=\widehat{xAB}\)
nên \(\widehat{zBC}=\widehat{yCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Bz//Cy
mà Ax//Bz
nên Ax//Cy