RÚT GỌN
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Rút gọn : \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Cho \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B2 = \(4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
= \(8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
= \(8+2\sqrt{6-2\sqrt{5}}\)
= \(8+2\sqrt{5-2\sqrt{5}+1}\)
= \(8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
= \(8+2.\left(\sqrt{5}-1\right)\) (do \(\sqrt{5}>1\))
= \(6+2\sqrt{5}\)
= \(5+2\sqrt{5}+1\)
= \(\left(\sqrt{5}+1\right)^2\)
=> B = \(\sqrt{5}+1\)
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}\right)^2+\left(\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2+2\sqrt{4+\sqrt{10+2\sqrt{5}}}\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.1+1^2}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(8+2\left|\sqrt{5}-1\right|=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.1+1^2\)
\(=\left(\sqrt{5}+1\right)^2\Rightarrow A=\sqrt{5}+1\left(A>0\right)\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) rút gọn
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\\ A^2=8+2\sqrt{16-10-2\sqrt{5}}=8+2\sqrt{6-2\sqrt{5}}\\ A^2=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ A=\sqrt{5}+1\)
Rút gọn biểu thức : \(\sqrt{4+\sqrt{10+2\sqrt{5}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(\Leftrightarrow A^2=8+2\sqrt{16-10-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\sqrt{6-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\left(\sqrt{5}-1\right)\\ \Leftrightarrow A^2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ \Leftrightarrow A=\sqrt{5}+1\)
Vậy \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)
5.Rút gọn:
B= \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}\)
6.Rút gọn:
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
RÚT GỌN A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}\)
Rút gọn:
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}
\)
Rút gọn biểu thức: \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
#)Giải :
Bình phương hai vế, ta được :
\(B^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{\left(16-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)\)
Do \(B>0\)nên \(B=\sqrt{8+2\left(\sqrt{5}-1\right)}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
#~Will~be~Pens~#
Bình phương hai vế, ta được:
B2=8+2√(4+√10+2√5)(4−√10+2√5)=8+2√(16−(10+2√5))B2=8+2(4+10+25)(4−10+25)=8+2(16−(10+25))
B2=8+2√6−2√5=8+2√(√5−1)2=8+2(√5−1)B2=8+26−25=8+2(5−1)2=8+2(5−1)
Do B>0B>0 nên B=√8+2(√5−1)=√6+2√5=√5+1B=8+2(5−1)=6+25=5+1
Tk mk nha
~ Hok tốt ~
Thanks m.n đã tk mk
Rút gọn biểu thức:
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Đặt biểu thức trên là \(A\)
Ta có \(A^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)
\(\Rightarrow A=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
cho hỏi sao ra được kết quả như vậy giải thích dùm đi
Gọi biểu thức là P:
Bình phương hai vế, ta có:
\(P^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(P^2=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)\)
\(\text{Do }P>0\text{ nên }P=\sqrt{8+2\left(\sqrt{5}-1\right)}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
rút gọn biểu thức
\(\sqrt{4-\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}\)
Đặt cái đấy là A
A2 = 8 + \(2\sqrt{6-2\sqrt{5}}\)
= 8 + \(2\sqrt{5}-2\)
= 6 + 2\(\sqrt{5}\)= (\(1+\sqrt{5}\))2
=> A = \(1+\sqrt{5}\)