Giá trị nhỏ nhất của biểu thức \(P=\left|x-2\right|+2y^4+5=\)
Cho x,y là các số thực. Tìm giá trị nhỏ nhất của biểu thức P = \(\left(x+2y+1\right)^2+\left(x+2y+5\right)^2\)
Đặt \(x+2y+1=a\)
\(P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)
Tìm giá trị nhỏ nhất của biểu thức sau:\(B=-17+\left(5-x\right)^2+\left|2y-6\right|\)
Tìm giá trị nhỏ nhất của biểu thức:
\(|2y+7.4|+6.2+|-x+2.1|\)
Tìm giá trị lớn nhất của biểu thức:
\(-5\left\{\left(a-1\right)^2-6.5+|b+1\right\}\)
Giá trị nhỏ nhất của biểu thức C=\(\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2.5\)
Giá trị nhỏ nhất của biểu thức :\(\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)là
Ta có\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)có GTNN khi \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2-\left|2y+1\right|-2,5\)có GTNN là \(\frac{1}{3}\cdot0+0-2,5=-2,5\)
Vậy GTNN của biểu thức trên là -2,5
Giá trị nhỏ nhất của biểu thức: \(C=\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)
Vì: \(\begin{cases}\frac{1}{3}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+2\right|\ge0\end{cases}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
Vậy GTNN của C là -2,5 khi \(\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Cho x-y=2, tìm giá trị nhỏ nhất của biểu thức C= \(\left|2x+1\right|+\left|2y+1\right|\)
\(C=\left|2x+1\right|+\left|-2y-1\right|\ge\left|2x+1-2y-1\right|=2\left|x-y\right|=4\)
\(C_{min}=4\)
Tìm giá trị nhỏ nhất của biểu thức :\(P=\left|X-2\right|+\left|-2Y+8\right|+2018\)
Ta có : \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|-2y+8\right|\ge0\end{cases}}\)
\(\Rightarrow P=\left|x-2\right|+\left|-2y+8\right|+2018\)đạt GTNN
\(\Leftrightarrow\)\(\hept{\begin{cases}\left|x-2\right|=0\\\left|-2y+8\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\-2y+8=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\-2y=-8\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy P đạt GTNN <=> x = 2 ; y = 4
*<=> : khi và chỉ khi
Quên, sót :
- Cái đoạn suy ra P = ... đạt GTNN bạn sửa thành : P = ... đạt GTNN bằng 2018 <=> ...
- Bổ sung câu kết : Vậy P đạt GTNN bằng 2018 <=> x =2 ; y = 4 nhé
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau
a) A= (x-1)(x-3)\(\left(x^2-4x+5\right)\)
b) B= \(x^2\)-2xy+\(2y^2\)-2y+1
c) C= 5+ (1-x)(x+2)(x+3)(x+6)
a: A=(x-1)(x-3)(x2-4x+5)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)
\(=\left(x^2-4x+4\right)^2-1\)
\(=\left(x-2\right)^4-1>=-1\)
Dấu = xảy ra khi x-2=0
=>x=2
b: \(B=x^2-2xy+2y^2-2y+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)
Dấu = xảy ra khi x-y=0 và y-1=0
=>x=y=1
c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)
\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)
\(=-\left(x^2+5x\right)^2+36+5\)
\(=-\left(x^2+5x\right)^2+41< =41\)
Dấu = xảy ra khi \(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)