Tìm x:
\(\frac{x}{2}=\frac{y}{4}\)và x4.y4 =16
Cho biết hai đại lượng y và x tỉ lệ nghịch với nhau :
x | X1 = 2 | X2 = 3 | X3 = 4 | X4 = 5 |
y | Y1 = 30 | Y2 = ? | Y3 = ? | Y4 = ? |
Tìm hệ số tỉ lệ
Ta có :
y và x là hai đại lượng tỉ lệ nghịch với nhau ⇒ y = a/x
Nên hệ số tỉ lệ a = x.y = 2.30 = 60
Tìm x
(x-5)2=(3+2x)2
27x3-54x2+36x=9
cho bt x-y=4 và xy=1 tính giá trị của các biểu thức A=x2+y2,B=x3-y3,C=x4+y4
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1
Tìm x
(x-5)^2=(3+2x)^2
27x^3-54x^2+36x=9
cho bt x-y=4 và xy=1 tính giá trị của các biểu thức A=x2+y2,B=x3-y3,C=x4+y4
(x - 5)² = (3 + 2x)²
(x - 5)² - (3 + 2x)² = 0
[(x - 5) - (3 + 2x)][(x - 5) + (3 + 2x)] = 0
(x - 5 - 3 - 2x)(x - 5 + 3 + 2x) = 0
(-x - 8)(3x - 2) = 0
-x - 8 = 0 hoặc 3x - 2 = 0
*) -x - 8 = 0
-x = 8
x = -8
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = -8; x = 2/3
--------------------
27x³ - 54x² + 36x = 9
27x³ - 54x² + 36x - 9 = 0
27x³ - 27x² - 27x² + 27x + 9x - 9 = 0
(27x³ - 27x²) - (27x² - 27x) + (9x - 9) = 0
27x²(x - 1) - 27x(x - 1) + 9(x - 1) = 0
(x - 1)(27x² - 27x + 9) = 0
x - 1 = 0 hoặc 27x² - 27x + 9 = 0
*) x - 1 = 0
x = 1
*) 27x² - 27x + 9 = 0
Ta có:
27x² - 27x + 9
= 27(x² - x + 1/3)
= 27(x² - 2.x.1/2 + 1/4 + 1/12)
= 27[(x - 1/2)² + 1/12] > 0 với mọi x ∈ R
⇒ 27x² - 27x + 9 = 0 (vô lí)
Vậy x = 1
A = x² + y²
= x² - 2xy + y² + 2xy
= (x - y)² + 2xy
= 4² + 2.1
= 16 + 2
= 18
B = x³ - y³
= (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + xy + 2xy)
= (x - y)[(x - y)² + 3xy]
= 4.(4² + 3.1)
= 4.(16 + 3)
= 4.19
= 76
C = x⁴ + y⁴
= (x²)² + (y²)²
= (x²)² + 2x²y² + (y²)² - 2x²y²
= (x² + y²)² - 2x²y²
= (x² - 2x²y² + y² + 2x²y²)² - 2x²y²
= [(x - y)² + 2x²y²]² - 2x²y²
= (4² + 2.1²)² - 2.1²
= (16 + 2)² - 2
= 18² - 2
= 324 - 2
= 322
a: =>(2x+3)^2-(x-5)^2=0
=>(2x+3+x-5)(2x+3-x+5)=0
=>(x+8)(3x-2)=0
=>x=2/3 hoặc x=-8
b: =>27x^3-54x^2-36x-9=0
=>3x^3-6x^2-4x-1=0
=>\(x\simeq2,57\)
c: A=x^2+y^2=(x-y)^2+2xy=4^2+2=18
B=x^3-y^3=(x-y)^3+3xy(x-y)
=4^3+3*1*4
=64+12=76
C=(x^2+y^2)^2-2x^2y^2
=18^2-2*1^2=322
tìm x,y
a)\(\frac{x+5}{3}=\frac{y-7}{4}\) và x+y=23
b )\(\frac{x}{4}=\frac{-y}{11}\) và x+y 35
c)\(\frac{x^2}{16}=\frac{y^2}{9}\)và x2+y2=100
\(\frac{x+5}{3}=\frac{y-7}{4}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{3}=\frac{y-7}{4}=\frac{x+5+y-7}{3+4}=\frac{23-2}{7}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot3-5=4\\y=3\cdot4+7=19\end{cases}}\)
đặt \(k=\frac{x+5}{3}=\frac{y-7}{4}\)
\(\Rightarrow\hept{\begin{cases}x=3k-5\\y=4k+7\end{cases}}\)
\(\Rightarrow x+y=3k-5+4k+7=7k+2=23\)
\(\Rightarrow k=\frac{23-2}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=19\end{cases}}\)
các câu tiếp theo tương tự
\(\frac{x}{4}=-\frac{y}{11}\)
\(\frac{x}{4}=\frac{y}{-11}\)
\(=>\frac{x}{y}=-\frac{11}{4}\)
Mà tổng x + y = 35
=> coi x là - 11 phần bằng nhau thì y là 4 phần như thế!!
x là : 35 : ( - 11 + 4 ) x -11 = 55
y là : 35 - 55 = -20
Vậy x = 55
y = -20
Tìm x , y , z biết :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x2 - y2 = - 16
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x^2-y^2=-16\)
Áp dụng tinh chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x^2-y^2}{8^2-12^2}=\frac{-16}{-80}=\frac{1}{5}\)
\(\hept{\begin{cases}\frac{x^2}{8^2}=\frac{1}{5}\Rightarrow x=\sqrt{\frac{1}{5}.8^2}=\frac{8\sqrt{5}}{5};x=-\frac{8\sqrt{5}}{5}\\\frac{y^2}{12^2}=\frac{1}{5}\Rightarrow y=\sqrt{\frac{1}{5}.12^2}=\frac{12\sqrt{5}}{5};y=-\frac{12\sqrt{5}}{5}\\\frac{z}{15}=\sqrt{\frac{1}{5}}\Rightarrow z=\sqrt{\frac{1}{5}}.15=3\sqrt{5}\end{cases}}\)
Vậy .......
Mong bạn thông cảm cho . Dấu " / " là phân số nhé !
x/2 = y/3 ; y/4 = z/5 và x2 - y2 = -16
=> x/2 = y/3 <=> x/8 = y/12 (1)
y/4 = z/5 <=> y/12 = z/15 (2)
Từ (1) và (2) suy ra : x /8 = y/12 = z/15 và x2 - y2 = -16
=> x2/16 = y2/24 = z/15 <=> x2/16 = y2/24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
x2/16 = y2/24 = x2 - y2 / 16 - 24 = -16/-8 = 2
=> x/8 = 2 => x = 16
y/12 = 2 => y = 24
z/15 = 2 => z = 30
Vậy x = 16
y = 24
z = 30
Chúc bạn học tốt !
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x2 - y2 = -16
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\Rightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\) (2)
Từ (1) và (2) suy ra : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x2 - y2 = -16
\(\Rightarrow\frac{x^2}{18}=\frac{y^2}{24}=\frac{z}{15}\) và x2 - y2 = -16
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{18}=\frac{y^2}{24}=\frac{z}{15}\Leftrightarrow\frac{x^2-y^2}{18-24}=\frac{-16}{-8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow y=24\\\frac{z}{15}=2\Rightarrow z=30\end{cases}}\)
Tìm x,y,z biết:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) Và \(x^2-y^2=-16\)
Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\\x^2-y^2=-16\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)
\(\Rightarrow x^2=\frac{1}{5}.64=\frac{64}{5}\Rightarrow x=+_-\sqrt{\frac{64}{5}}\)
\(y^2=\frac{1}{5}.144=\frac{144}{5}\Rightarrow y=+_-\sqrt{\frac{144}{5}}\)
\(z^2=\frac{1}{5}.255=51\Rightarrow z=+_-\sqrt{51}\)
CHÚC BẠN HỌC TỐT
Tìm x, y biết:
\(\frac{x}{2}=\frac{y}{4}\)và x4 . y4 = 16
\(\frac{x}{2}=\frac{y}{4}=k\)
=> \(x=2k;\)\(y=4k\)
Theo bài ra ta có:
\(x^4.y^4=16\)
<=> \(\left(2k\right)^4.\left(4k\right)^4=16\)
<=> \(4096.k^8=16\)
<=> \(k^8=\frac{1}{256}\)
<=> \(k=\pm\frac{1}{2}\)
làm nốt phần còn lại
x/2=y/4
=> 2y=4x
<=> y=2x
thay vào , ta có
x4 .(2x)4 =16
<=> 16x8=16
<=> x8 =1
=> x= 1 hoặc x=-1
thay vào ta có 2 cặp (x,y) là ( 1,2) và (-1,-2)
Tìm x,y,x biết : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z=-16
bạn vào đây : http://olm.vn/hoi-dap/question/108025.html
Giải tương tự thoi
tìm x , y , z biết
a) \(\frac{x}{2}=\frac{y}{5}\)và 3x - y = 10
b) \(\frac{x}{4}=\frac{y}{5}\)và x.y= 30
c) \(\frac{x}{4}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\)và 4x + y.z= 16
d) \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)và 3x - 2y + z = 105
a)
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ só bằng nhau
\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)
=> x=2.10=20
y=5.10=50
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)
Mà 2;5 cùng dấu
=> x; y cùng dấu
Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)
a) Ta có: \(\frac{x}{2}\) = \(\frac{y}{5}\) và 3x-y = 10
=> \(\frac{3x}{6}\) = \(\frac{y}{5}\) và 3x-y = 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}\) = \(\frac{y}{5}\) = \(\frac{3x-y}{6-5}\) = \(\frac{11}{1}\) = 11
=> x= \(\frac{11.6}{3}\) = 22
=> y= 11.5= 55
Vậy x= 22
y= 55